Research Statement

Courtney Miller

I am fundamentally drawn to studying how developers navigate technological disruptions in software en-
gineering. From digital infrastructure abandonment in open source software supply chains to generative Al
(GenAl) tool adoption on industrial development teams, I study the intersection of technical capabili-
ties and human practices that determine successful transitions during periods of technological
disruption. Such disruptions threaten the stability of critical infrastructure that form the foundation of
modern technology including healthcare systems, financial services, and transportation networks. Addressing
them is essential for ensuring software reliability, security, and the resilience of our broader digital economy.
My research is grounded in the real needs of practitioners and guided by the challenges they face. To address
these challenges, my distinctive approach combines rigorous empirical methods with interdisci-
plinary theoretical grounding: 1 leverage my degree in Statistics and eight years of empirical research
experience to develop multi-dimensional mixed-methods approaches, integrating human-centered qualitative
techniques with large-scale data-driven analysis, modeling, and visualization. This allows me to investigate
timely disruptions while systematically grounding my work in social science theories and established frame-
works e.g., signaling theory, game theory, and organizational behavior. The result is impactful insights and
tooling solutions that address sociotechnical challenges in software development and maintenance processes.

My research has been recognized by both the software engineering and open source communities. My first
author conference publications have received three ACM Distinguished Paper Awards at the International
Conference on Software Engineering (ICSE), and I am a recipient of the NSF GRFP. I have delivered invited
talks at industry research venues (e.g., Linux Open Source Summit North America) and guest appearances
on open source and academic podcasts (e.g., Sustain). I have contributed to 15 peer-reviewed publications
at venues including ICSE, ESE/FSE, and MSR, conducted large-scale empirical studies analyzing millions
of package dependency interactions [0SS’19], [ICSE’25], developed LLM-based classifiers achieving high
performance in independent practitioner evaluations [ICSE’26], and lead mixed-methods studies with a total
of 3,259 developer participants (3,148 survey participants and 111 interviewees) [ICSE’21], [ESEC/FSE’23].

My dissertation focuses on the disruption of dependency abandonment in software supply chains, while
recent work investigates how Generative Al (GenAl) tooling disrupts established development workflows—
which I argue is one of today’s most urgent challenges. As technology evolves, I will continue applying
my empirical expertise to study and support developers through the disruptions of tomorrow.

Understanding Abandonment Disruptions in Software Supply Chains

Modern software relies on open source as digital infrastructure, creating the software supply chains that our
daily lives rely on, yet many widely used open source packages are abandoned by maintainers. When a
dependency is abandoned, it shifts from a free resource to a liability, exposing downstream projects
to the risk of unpatched vulnerabilities, supply chain attacks, and costly unplanned migrations. Because
modern applications often rely on hundreds of dependencies, even a single abandonment can trigger cascading
service disruptions, affecting critical systems across healthcare, finance, and government infrastructure.

My research is among the first to study dependency abandonment from the user perspective,
with the goal of enabling the sustainable use of open source by supporting users when they face
abandonment, combining (1) semi-structured interviews on the experiences and practices of developers who
have faced abandonment; with (2) large-scale quantitative analysis of abandonment prevalence as well as
downstream impact and response, informed by signaling theory. By systematically studying abandonment
as a disruption, we can better understand the challenges developers face when confronted with its risks and
realities and design solutions that support them in navigating abandonment.

To understand developers’ experiences with abandonment, we conducted exploratory semi-structured
interviews with 33 developers with abandonment experience [ESEC/FSE’23]. Developers reported strug-
gling to respond due to limited resources and guidance, often relying on labor-intensive manual
investigations to identify abandonment that delay action. Many wanted to detect abandonment ear-
lier, before it triggered urgent problems. Guided by signaling theory, we therefore hypothesize that increasing
transparency around abandonment can make it more visible and, in turn, support downstream responses.



Building on these insights, we conducted a large-scale quantitative study of abandonment prevalence
and downstream responses across the JavaScript npm ecosystem [ICSE’25]. We found that 15% of widely
used packages were abandoned between 2015-2020, yet only 18% of exposed projects removed them during
that period. To test whether transparency affects remediation, we compared responses to explicit-notice
abandonment (public end-of-support signals) with activity-based abandonment (sustained inactivity) using
survival analysis. Projects facing explicit-notice abandonment were 58% more likely to remove abandoned
dependencies, demonstrating not only that abandonment is both widespread and under-addressed,
but that improved information transparency can significantly accelerate downstream response.
These findings motivate the design of interventions to improve automated identification of abandonment.

Designing Interventions for Abandonment Disruptions in Software Supply Chains

Since not all abandonment matters equally to most developers [ESEC/FSE’23], indiscriminate alerts could
overwhelm developers and cause notification fatigue— a major usability issue limiting the effectiveness of
existing tools for other dependency management practices e.g., dependency updates. While manual user
customization is a potential solution, it is often not practically viable given the scale of modern dependency
trees and the number of urgent tasks competing for developer’s time. Thus, the key questions become (1)
what abandonment will be impactful to a particular project given the context of their dependency usage;
and (2) how to make such predictions at scale. We hypothesize and later demonstrate that our method
using large language models (LLMs), equipped with theory-driven reasoning and contextual
information, can accurately predict the impact of abandonment better than LLMs alone to
support developer decision-making [ICSE’26]. This method is also promising for other disruptions
where traditional tooling approaches have failed and theory or design work is still essential, lowering the
barrier to creating sophisticated tools, as we will discuss further in the Future Work section.

We begin by conducting formative need-finding interviews with 22 developers to develop a theoretical
understanding of what factors influence the impactfulness of a dependency’s abandonment on a
project given the context of their dependency usage, identifying four key factors: depth of integration,
availability of alternatives, importance of the functionality provided, and external environmental pressures.

We then leverage this theoretical understanding to develop Abandabot-Predict, a theory-driven LLM-based
classifier to predict the impact of abandonment using context-specific reasoning and information. Abandabot-
Predict combines repository mining and static analysis to extract context-specific usage information sufficient
for expert judgment using CodeQL enabling production-grade global data-flow analysis. Using the Retrieval-
Augmented Generation pattern, we embed this information in a theory-based reasoning prompt fed to the
LLM, which executes sequential reasoning steps to produce a binary prediction of impactful /not impactful.

Finally, through an independent evaluation study with 124 developers, we demonstrate that our classifier
is effective at predicting project-specific impactfulness, achieving a Macro-F1 score of 0.840.

Beyond abandonment, I have investigated other critical disruptions in software supply
chains. My work on maintainer disengagement revealed how burnout and life changes drive voluntary
exits [0SS’19], informing retention strategies. Studies on toxicity [ICSE’22] and trust decomposition [ICSE-
NIER’24] examined how social and security disruptions propagate through development communities. This
broader perspective on disruptions enables more comprehensive and well-informed solutions.

Exploring Tomorrow’s Disruptions: GenAlI Tools in Development Workflows

The rapid deployment of GenAl tools has disrupted software development on a seismic scale, promising
a paradigm shift in how software is built and maintained. Yet despite widespread availability, adoption
remains uneven even within teams- undercutting expected productivity gains, frusturating management
expectations, and casting uncertainty on the future roles of developers. To investigate why adoption
varies among developers in seemingly similar contexts, we utilize a paired interview design
with 54 developers representing 27 pairs from the same team matched on key factors—primary
programming language, role, and seniority- but who exhibit contrasting usage patterns (one
frequent and one infrequent user), identified using telemetry data from a large multinational software
company [UNDER-REVIEW’26]. This unique design ensures both developers share the same team-level



context (e.g., codebase, manager, policies), enabling direct comparison of context-specific challenges
and workarounds to yield an empirically grounded sociotechnical account of GenAlI tool usage.
Our analysis reveals three core insights:

1. Usage patterns diverge based on mindset and approach: Frequent users often perceive GenAl
as a collaborative partner, integrate it continuously and experimentally, and persist through challenges.
Infrequent users more often perceive it as a utility feature, apply it conservatively for narrow well-vetted
tasks, and more often abandon it quickly when challenges arise.

2. Organizational factors amplify adoption differences: Organizational factors can actively shape
individual factors through an amplification effect, e.g., team-specific demonstrations of applying tooling
on common development tasks can transform developers’ perception of tool usefulness.

3. The Productivity Pressure Paradox: A self-perpetuating organizational dynamic we coined where
increased productivity expectations from management without corresponding support often creates a
paradoxical effect, where developers lack the time necessary to develop the skills that would save time.

These findings challenge the prevailing GenAlI deployment strategy across the software in-
dustry, which frames the challenge of determining how to effectively use these tools in order to
yield the expected systematic productivity gains as the responsibility of individual developers.

Future Work

My long-term research vision centers on helping developers and organizations effectively nav-
igate technological disruptions in software engineering. The software industry faces two major
disruptions demanding immediate attention. First, the adoption of GenAl is fundamentally altering and
challenging established development processes. This needs to be urgently understood and supported, par-
ticularly the long-term impacts on software quality, security, and maintainability. Second, software supply
chains face escalating threats from dependency abandonment and sophisticated targeted attacks. My fu-
ture work addresses these disruptions through three complementary research thrusts. First, I'll
develop Al-powered approaches that transform how we respond to supply chain disruptions, shifting from
reactive crisis management to proactive resilience. Second, I'll establish frameworks and infrastructure that
enable effective organizational GenAl integration, ensuring usage enhances rather than erodes developer
capabilities. Third, I'll investigate how practices like code review must evolve when GenAl fundamentally
changes what it means to write, review, and understand code as well as best practices for safe, effective, and
genuinely assistive use. My research recognizes that disruptions are not aberrations to be avoided
but inevitable evolutionary forces that require systematic study and strategic response.

AlI-Powered Supply Chain Sustainability and Security

The exponential growth in supply chain attacks in recent years, including those leveraging abandoned de-
pendencies as an attack vector, are disruptive to software security and highlight the urgent need for more
research supporting the management of software supply chains and the associated risks they present. My
future work will develop and leverage Al-powered tools and strategies to enable proactive resilience rather
than reactive crisis management through three interconnected approaches. The unifying question driving
this work: how can we leverage AI to transform supply chains from fragile dependency networks
into resilient ecosystems that anticipate and adapt to disruptions?

Approach #1: Intelligent Blueprints for Proactive Abandonment Response. Developers em-
phasize that just identifying abandonment is not enough— many require guidance on how to respond [ICSE’26].
As such, I will extend my dissertation and explore: How can we leverage community insights and
context-specific analysis to create project specific response blueprints? 1 will conduct controlled
experiments evaluating the effectiveness of various approaches for synthesizing wisdom-of-the crowd migra-
tion patterns, cross-platform community discussions, and project-specific architectural constraints extracted
via static analysis to generate customized intelligent LLM-based response and migration strategies.



While supporting individual responses to abandonment represents progress, there have been growing
calls for“community-oriented solutions”, which show potential for significantly reducing the collective cost
of responding to and recovering from digital infrastructure abandonment by reducing redundant effort and
increasing coordination [ESEC/FSE’23]. How do open source communities successfully recover
from dependency abandonment, and what patterns distinguish successful from failed recovery
attempts? 1 will use a mixed methods approach combining large-scale software repository data mining,
LLMs-as-classifiers, statistical analysis, and targeted qualitative investigation to identify effective coordi-
nation strategies, quantify recovery success metrics, and develop evidence-based actionable guidance for
navigating critical transitions. This research advances resilient and trustworthy supply chain security by
showing how communities can collectively address abandonment—an essential capability for sustaining crit-
ical infrastructure amid complex dependency graphs and regulatory requirements.

Approach #2: Enabling Responsible Sunsetting. Although providing explicit notice of package
abandonment can help support downstream responses, many maintainers do not announce abandonment due
to limited time and resources, uncertainty about how to do so, and a lack of awareness of their downstream
users’ need. This underscores the need to lower the barriers to responsible project sunsetting. Can we
enable increased responsible sunsetting by understanding and designing support mechanisms to
meet the needs of maintainers winding down projects? 1will leverage participatory design, controlled
A /B experiments, LLMs for artifact generation, and user studies to design and evaluate the effectiveness of
tooling and interventions for navigating the process of responsibly sunsetting digital infrastructure projects,
as well as best practices for graceful transitions.

Approach #3: Theory-Based Context Engineering Beyond Abandonment. Finally, the ap-
proach demonstrated by Abandabot-Predict, of replacing traditional ML pipelines with theory-based context
engineering, enables rapid tool develop while maintaining interpretability. By systematically combining qual-
itative research to identify theoretical constructs with LLMs as scalable reasoning engines, this approach
can address diverse software engineering supply chain disruptions that require context-aware decision sup-
port. I will adapt this approach to address other disruptions like vulnerability prioritization,
demonstrating how theoretical frameworks combined with LLM reasoning can rapidly address
diverse supply chain threats. For example, applying this approach to vulnerability prioritization would
involve developing empirical models of exploitation likelihood, extracting application-specific attack surface
metrics, and synthesizing risk assessments calibrated to deployment contexts.

GenAlI Integration Infrastructure

Many organizations adopt GenAl tools expecting systematic productivity gains while simultaneously del-
egating the responsibility of determining how to effectively integrate these disruptive tools into existing
workflows in order to yield the expected productivity gains to individual developers. However, my re-
cent work demonstrates how increased productivity expectations from management without corresponding
support can lead to pressure-induced reversion to familiar methods, hindering the investments into skill
development necessary to achieve the expected productivity gains and creating a self-perpetuating organi-
zational dynamic which we refer to as the Productivity Pressure Paradox. Highlighting the urgent need for
frameworks outlining how organizations can actively support and shape GenAl tool usage through both
support mechanisms and assistive infrastructure. What organizational support mechanisms are ef-
fective at supporting developer’s GenAI workflow integration and skill development in various
contexts? 1 will conduct randomized controlled trials with industry collaborators to quantify the effective-
ness of different support mechanisms (e.g., context-specific resources, knowledge sharing structures, and Al
champions) across diverse team contexts. What tooling and support infrastructure is needed to en-
able effective integration of GenAl tools into existing workflows? I will design, build, and evaluate
novel integration support infrastructure using participatory design, contextual inquiry, and usability studies
to inform prototype development. Initial prototypes include: lightweight templates for team task-specific
prompt catalogs, version-controlled prompt evolution tracking systems, and workflow analyzers that identify
automation opportunities through task decomposition analysis.

Finally, I will explore how we can move past shallow vanity adoption metrics (e.g., usage frequency) to
better measure not just use but effective use by asking: What value-based metrics measure effective
GenAlI tool use and skill development, and how can we operationalize them at scale? 1 will



employ a mixed-methods empirical approach to develop metrics for AT skill progression: tool exploration time,
effective use case discovery, and debugging efficiency for Al-generated artifacts. These metrics, validated
through longitudinal studies tracking developer usage trajectories, will enable organizations to distinguish
between superficial usage and meaningful skill development.

Software Process Evolution for the GenAlI Era

Al-generated code fundamentally disrupts established software supply chain security practices [S3C2’25],
compromising existing review protocols, security assessments, and trust frameworks that are essential for
ensuring supply chain integrity. Traditional code review assumes human-scale changes and comprehensible
implementation logic. However, as the size of pull requests increases from hundreds to thousands of lines,
developers are unable to perform the same comprehensive review process. Code review becomes “it seems to
work” rather than “I understand this.” My work will help shape the evolution of software development
and maintenance processes in the new paradigm of GenAl-enabled software engineering.

How do code review practices evolve when reviews can’t understand implementations? 1 will
empirically analyze how code review practices change when reviewing Al-generated modifications through
comparative studies of thousands of pull requests, measuring review effectiveness (defect detection rates,
security issue identification, review duration) across human-authored versus Al-generated changes. I will also
examine the security implications of evolving review practices through longitudinal analysis of vulnerability
introduction rates in packages pre/post Al adoption across npm and PyPI ecosystems. This will include
quantifying the security impact of reduced human code comprehension on downstream supply chain integrity.

One emerging strategy for addressing the challenges of reviewing Al-generated code is to use GenAl tools
for automated code review. This shift toward closed-loop systems where AI both produces and evaluates
code raises urgent questions about oversight: despite vendor warnings, best practices for integrating human
judgment remain unclear. How can GenAlI automated code review be incorporated into review
processes while ensuring strategic human oversight to preserve quality guarantees? Through
large-scale repository mining, natural experiments, and strategic qualitative analysis, I will triangulate evi-
dence to reveal interaction patterns that balance automated review with effective human oversight.

Vibe coding is the next big GenAl disruption to software development processes. Vibe coding is an
emergent software development paradigm in which developers specify software functionality through natural-
language interaction with large language models rather than direct code authoring. Tools for vibe coding
including autonomous coding agents like Claude Code, which relies on natural language prompts in a terminal
window, and Github Copilot coding agent, which can be assigned an issue on GitHub and then independency
generate code and submit a pull request for review, represent a proposed shift in the human role in
software development from implementation to iterative intent-driven guidance and validation.

This shift raises fundamental questions about software quality, developer expertise, and the nature of
programming itself while also providing opportunities for developing augmented maintenance support tool-
ing. How can vibe coding and autonomous coding agents be leveraged to reduce maintenance
toil while preserving software security, compliance, and maintainability? My research will ana-
lyze real-world developer interaction patterns with coding agents, identifying friction points where current
approaches fail and developing theory to explain when coding agents might erode code quality and when
good practices can mitigate it. My work will help answer the critical question of: what is the difference
between what LLMs could be used for and what they should should be used for, in order to sustain
software quality, meet compliance standards, and ensure that tools provide genuinely assistive support.



References

[(0SS’'19)] Courtney Miller, David Gray Widder, Christian Késtner, and Bogdan Vasilescu.
“Why Do People Give Up FLOSSing? A Study of Contributor Disengagement in
Open Source”. In: IFIP International Conference on Open Source Systems. 2019,
pp. 116-129.

[(ICSE’25)] Courtney Miller, Mahmoud Jahanshahi, Audris Mockus, Bogdan Vasilescu, and
Christian Késtner. “Understanding the Response to Open-Source Dependency
Abandonment in the npm Ecosystem”. In: Proc. Int’l Conf. Software Engineering
(ICSE). 2025. ACM Distinguished Paper Award.

[(ICSE’26)] Courtney Miller, Hao He, Weigen Chen, Elizabeth Lin, Chenyang Yang, Bog-
dan Vasilescu, and Christian Késtner. “Designing Abandabot: When Does Open
Source Dependency Abandonment Matter?” In: Proc. Int’l Conf. Software Engi-
neering (ICSE). 2026.

[(ICSE’21)] Courtney Miller, Paige Rodeghero, Margaret-Anne Storey, Denae Ford, and Thomas
Zimmermann. ““How Was Your Weekend?” Software Development Teams Work-
ing From Home During COVID-19”. In: Proc. Int’l Conf. Software Engineering
(ICSE). 2021. ACM Distinguished Paper Award.

[(ESEC/FSE23)] Courtney Miller, Bogdan Vasilescu, and Christian Késtner. ““We Feel Like We're
Winging It:” A Study on Navigating Open-Source Dependency Abandonment”.
In: Proc. Europ. Software Engineering Conf./Foundations of Software Engineer-
ing (ESEC/FSE). 2023.

[(ICSE’22)] Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian
Kastner. ““Did You Miss My Comment or What?” Understanding Toxicity in
Open Source Discussions”. In: Proc. Int’l Conf. Software Engineering (ICSE).
2022. ACM Distinguished Paper Award.

[(ICSE-NIER’24)] Lina Boughton, Courtney Miller, Yasemin Acar, Dominik Wermke, and Christian
Kastner. “Decomposing and Measuring Trust in Open-Source Software Supply
Chains”. In: Proc. Int’l Conf. Software Engineering: New Ideas and Emerging
Results (ICSE-NIER). 2024.

[(UNDER-REVIEW’26)] Courtney Miller, Rudrajit Choudhuri, Mara Ulloa, Sankeerti Haniyur, Robert
DeLine, Margaret-Anne Storey, Emerson Murphy-Hill, Christian Bird, and Jenna
L Butler. ““Maybe We Need Some More Examples:” Individual and Team Drivers
of Developer GenAI Tool Use”. In: Under Review (2026).

[(S3C2'25)] Courtney Miller, William Enck, Yasemin Acar, Michel Cukier, Alexandros Kaprav-
elos, Christian Késtner, Dominik Wermke, and Laurie Williams. “S3C2 Sum-
mit 2024-08: Government Secure Supply Chain Summit”. In: arXiv preprint
arXiv:2504.00924 (2025).



