
Decomposing and Measuring Trust in Open-Source Software
Supply Chains

Lina Boughton
The College of Wooster

Courtney Miller
Carnegie Mellon University

Yasemin Acar
University of Paderborn

Dominik Wermke
North Carolina State University

Christian Kästner
Carnegie Mellon University

Components of Trust:

Trustee’s Perceived:

Trustor’s
Propensity AbilityIntegrityBenevolence

Trust Contracts:
Step 1: Derive components of trust
from trust literature (Sec 2.2)

Step 2: Identify trust contracts
based on taxonomy of supply
chain attacks (Sec 3.1)

Step 3: Design behavior-based
indicators for components of trust
for given contract (Sec 3.2)

Step 4: Operationalize indicators
into data-driven metrics (Sec 3.3)

Presence of security
checks in CI pipeline

Repo security
badges

Trustee’s tenure
on GitHub

Time from �rst PR to commit access
for similar new contributors

Trustor’s prev. outcomes with
similar new contributors

Security practices of
trustee’s other projects

Length of trustee’s history
contributing to open source

Maintainer (trustor) trusts that new contributor
(trustee) will not add malicious code

User (trustor) trusts that project maintainer
(trustee) will continue security updates

....

Figure 1: Example illustrating how metrics can be derived from components of trust for a given contract

ABSTRACT
Trust is integral for the successful and secure functioning of soft-
ware supply chains, making it important to measure the state and
evolution of trust in open source communities. However, existing
security and supply chain research often studies the concept of trust
without a clear definition and relies on obvious and easily available
signals like GitHub stars without deeper grounding. In this paper,
we explore how to measure trust in open source supply chains with
the goal of developing robust measures for trust based on the behav-
iors of developers in the community. To this end, we contribute a
process for decomposing trust in a complex large-scale system into
key trust relationships, systematically identifying behavior-based
indicators for the components of trust for a given relationship, and
in turn operationalizing data-driven metrics for those indicators,
allowing for the wide-scale measurement of trust in practice.
ACM Reference Format:
Lina Boughton, CourtneyMiller, YaseminAcar, DominikWermke, andChris-
tian Kästner. 2024. Decomposing and Measuring Trust in Open-Source Soft-
ware Supply Chains. In New Ideas and Emerging Results (ICSE-NIER’24),
April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3639476.3639775

1 INTRODUCTION
Digital innovation has been rapidly accelerated by the increased
use of open source software which serves as digital infrastruc-
ture [4, 6]. Software engineering teams can reap the benefits by
building software out of layers of existing reusable components
such as libraries, frameworks, and cloud infrastructure. The use
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0500-7/24/04.
https://doi.org/10.1145/3639476.3639775

of these digital infrastructure components creates software supply
chains [2] in which a software artifact includes components.

Because of the interdependent and community-focused nature
of open source supply chains, trust is an integral part of their suc-
cessful and secure functioning. But sometimes that trust can be
exploited to turn a dependency into a deliberate attack vector po-
tentially putting all direct and indirect users of the dependency
at risk [10, 14]. Due to attacks, or fear of such attacks, developers
often adopt mitigation strategies to reduce their risk, for example,
some companies create private mirrored and internally validated
versions of the open source dependencies they rely on [18]. Indi-
vidual risk mitigation strategies can be costly and time-consuming
and have little to no benefit to the broader community relying on
those same dependencies, reducing efficiency from a community
perspective [18]. In other words, a lack of trust in open source sup-
ply chains is cost-ineffective and can undermine and threaten open
source and the benefits it provides if developers feel the need to
divert resources to reduce their private risk rather than supporting
and reinforcing the open source communities they benefit from.

Because of the key role trust takes in open source supply chains,
it is important for us to understand and monitor the state of trust in
open source, and to detect when and where trust changes to then
explore interventions. In this study, we explore how to measure
trust in open source supply chains. However, trust is a complex,
nuanced, and multifaceted concept, which makes operationalizing
and measuring trust difficult [5, 9]. Existing security and supply
chain research often studies the concept of trust without a clear
definition [7, 20], existing survey and interview work on trust often
relies on the participants’ intuitive understanding of trust [25], and
measures of trust often rely on obvious and easily available signals
like GitHub stars without deeper grounding [21, 23].

Our goal is to develop robust measures for trust. Ideally, our
measures will be grounded in how people actually behave, i.e., ob-
serving revealed preferences identified from behavior rather than
relying on stated preferences from asking directly about the abstract

https://doi.org/10.1145/3639476.3639775
https://doi.org/10.1145/3639476.3639775

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Lina Boughton, Courtney Miller, Yasemin Acar, Dominik Wermke, and Christian Kästner

concept of trust – therefore we need to define trust and identify
how behaviors relate to trust. We approach measuring trust sys-
tematically by defining and decomposing trust into facets that are
amendable to concrete measurement. Our work is grounded in the
formalized definition of trust and the components of trust that in-
fluence whether trust is established that we present, with is sourced
from decades of research on organizational trust and interpersonal
trust in fields like organizational psychology and sociology. To
that end, we accomplish this goal in two high-level parts. First,
we begin by decomposing the high-level concept of trust in open
source supply chains into concrete trust relationships and their
corresponding trust contracts. Second, we demonstrate how we can
identify details of developer behavior that can serve as indicators
for the components of trust for a given trust contract, and how
in turn those indicators can be operationalized to design concrete
data-driven metrics that can serve as signals trust in practice, as we
illustrate in Figure 1. We believe that this decomposition will allow
the community to design better measures, perform longitudinal
studies, identify problem areas and explore interventions.

In this paper, we contribute a process for decomposing trust
in a complex large-scale system into key trust relationships and
contracts, systematically identifying behavior-based indicators for
the components of trust for a given contract, and in turn opera-
tionalizing data-driven metrics for those indicators, allowing for
the wide-scale measuring of trust in practice. To demonstrate how
this process can be used to measure trust in open source supply
chains, we completed the literature analysis and the identification
of contracts based on an existing taxonomy of supply chain attacks.
We believe this process is applicable to other areas of interpersonal
and organizational trust in computing.
2 DEFINING TRUST AND ITS COMPONENTS

(RELATEDWORK)
Defining trust is a prerequisite for designing and assessing trust
metrics. Related work studying trust in the context of software and
security usually does so without providing a formalized definition
of trust, instead relying on the participant’s internal implicit and in-
tuitive definition of trust or on actions that the researchers associate
with trust. For example, one interview study asked respondents
how they “see the role on trust in the Linux Kernel community”
which participants might interpret inmany different ways (to which
more than half the responses included the statement ‘yes’) [3], and
another interview study asked participants about trust (without
using the term in the interview guide) when using open source by
asking about decisions regarding dependency selection[7].

Although the concept of trust is often used intuitively in software
and security research, there is a long history of social sciences
research identifying definitions, models, and theories of trust. This
research provides a foundation for a more concrete and nuanced
understanding of trust and the relevant factors for establishing and
observing trust. While there is a separate line of research in trust
in automation [11, 15], here we build in particular on research on
organizational trust.

2.1 Defining Trust
We build on the definition of trust by Mayer et al. [17] and define
trust as the willingness of the trustor (the person doing the trusting) to

take risks by being vulnerable to the trustee (the person being trusted).
Trust requires risk; for trust to be established, the trustor must
accept the risk of an undesirable event possibly occurring, making
themselves vulnerable to the trustee’s actions. For the trustor to
accept this vulnerability they must (1) perceive that the event that
is at risk of occurring is undesirable; and (2) believe it is possible
for this event to occur [12]. Trust requires the trustor to believe
the trustee will act in a way that aligns with their best interest. In
cases where the trustor does not believe this enough to accept the
aforementioned vulnerability, the trustor distrusts the trustee [22].
Distrust indicates the trustor is not willing to fully accept being
vulnerable to the actions of the trustee, which typically manifests
in attempts to mitigate the risk of unfavorable event occurrence.
For example, if an organization is interested in adopting an open
source library for use in one of their software products but they
have some distrust surrounding potential security vulnerabilities
in the library, they might (a) adopt the dependency but create a pri-
vate fork which they internally audit or (b) accept the opportunity
cost of not adopting it. Conversely, observed mitigations could be
interpreted as a sign of distrust.

While trust requires the acceptance of a risk that makes the
trustor vulnerable to an undesirable event occurring to them, trust
is not only necessary but beneficial inmany situations [19].Without
trust, everybody interacting with the same organization incurs
costs of mitigating risks. Mitigation costs may be shared, but that
might again require trust. In communities with trust where trustees’
actually act in the trustors’ best interest, these extra costs can be
avoided. For example, in the context of open source supply chains,
trust is beneficial because it allows developers to rely on open source
artifacts built and maintained by others and while they are making
themselves vulnerable to the strangers code, the trust allows them
to build on that code instead of writing and verifying every single
update themselves.
2.2 Components of Trust
Mayer et al. [17] further established a framework of what influences
trust relationships. They identify that the willingness of the trustor
to take risks by being vulnerable to the trustee is influenced by the
trustor’s propensity and the trustee’s perceived ability, benevolence,
and integrity [17]. We refer to these four factors that influence
trust as the components of trust. The trustor’s propensity is their
general willingness or tendency to trust, i.e., the likelihood that they
will choose to trust in any given situation. The trustee’s perceived
ability relates to their skills, competencies, and characteristics that
enable them to have influence over some specific domain. The
trustee’s perceived benevolence is their desire to do good, aside from
egoistic motives, by demonstrating caring and goodwill. Finally,
the trustee’s perceived integrity is extent to which they follow a
set of principles that the trustor is accepting of. Understanding the
four components of trust is useful in designing measurements of
trust because it allows for the creation of explicit measures that
focus on individual aspects that influence whether trust is built.

2.3 Contractual Trust
In addition to disentangling the components of trust, we also con-
sider different contracts, a concept explored under the name contrac-
tual trust [9, 12, 22]. A trust contract focuses the trust relationship

Decomposing and Measuring Trust in Open-Source Software Supply Chains ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal

on a specific aspect of a specific relationship, that is, a trustor be-
lieves the trustee will complete a specific action [9, 22]. For example,
an case of general trust would be ‘Julie trusts the developer of a de-
pendency,’ whereas an case of contractual trust would be ‘Julie trust
the developer of the dependency not to introduce a backdoor’ or ‘Julie
trust the developer to write secure code.’ Contractual trust is par-
ticularly relevant to trust in open source software supply chains
because it allows us to identify and enumerate the many different
trust relationships and their corresponding trust contracts within
the larger umbrella of the open source software supply chain.

3 DECOMPOSING AND MEASURING TRUST
IN SUPPLY CHAINS

Previous studies on trust in software and security usually investi-
gate the generic concept ‘trust’ in open source communities without
specifying who they are trusting about what and why. That is, they
do not identify a contract and do not consider which component of
trust most influence those decisions.

We expect that a more specific and decomposed notion of trust
will allows us to define multiple measures of distinct components
of trust. We expect such measures to be more reliable and to enable
pointing trust issues to specific relationships or concerns. In open
source supply chains, there is not just one person trusting another
but, instead, there is a complex network of interconnected parties
engaging in many different trust contracts. Some of these trust
contracts could include the user of an open source project trusting
that the project’s maintainers have not intentionally included mali-
cious code in the project, or the maintainers of a project trusting
that a new contributor has good intentions and is not planning on
injecting malicious code into the project as soon as they get commit
access. By only asking generalized questions about trust, we miss
the opportunity to learn about the various trust relationships in
this complex network.

To decompose trust specifically for software supply chains, we
proceed in two steps: Decomposition by contract and decomposi-
tion by trust component.

3.1 Identifying Trust Contracts
We first identify relevant trust contacts for key trust relationships
whose violation can lead to common supply chain attacks. We iden-
tify these trust contracts by working backwards from attacks to
contracts that must be violated for those attacks to happen. Specifi-
cally we develop the following process: we systematically analyze
all attacks in the recent taxonomy of supply chain attacks [14];
then, for each attack, we identify the potential trust relationships
involved and the expectations associated with that trust. Often,
multiple contracts relate to an attack and a trust contract may be
relevant for multiple attacks. This way, we explicitly trace from an
attack and corresponding threat to trust relationships and contracts,
as illustrated with an excerpt in Table 2.

3.2 Identifying Indicators of Trust Components
for Each Trust Contract

After identifying the trust relations and contracts, we now analyze
each contract individually to identify possible details of developer
behavior that could serve as indicators for the four components

of trust introduced in Section 2.2. Specifically we develop the fol-
lowing process: for a given contract, we consider each of the four
components of trust in turn, thinking through potentials details of
developer behavior that could serve as indicators for each compo-
nent within the context of the given contract. This process is then
repeated for each trust contract. Similar to the previous step, this
is a structured form of analysis, using the trust contracts and trust
components as checklists to systematically identify indicators at
every combination. While not every combination yields an indica-
tor, with this structured process we found many more indicators
than we would have with just an open brainstorming session. For
some combinations, we identified multiple indicators.

For example, consider the contract the project maintainer (trustor)
trusts the new contributor (trustee) will not add malicious code:

• Propensity: The maintainer’s propensity to trust could be ob-
served indirectly by looking at their past actions, specifically
seeing how they onboarded other contributors as maintain-
ers with similar experience previously. If they have openly
embraced new contributors in the past without much screen-
ing, this signals a higher propensity to trust.

• Perceived integrity: A new contributor who has been engaged
in good security practices across multiple projects in the past
may be perceived to have more integrity.

• Perceived benevolence: A new contributor with a long history
of contributing to open source projects may be perceived as
more benevolent.

• Perceived ability: For this contract, we do not think it makes
sense to think of the new contributor’s ability (e.g., ability to
perform an attack if they wanted?). We do not expect to find
an indicator for every contract-component combination.

3.3 Operationalizing Metrics for Indicators
Once we identify indicators of trust, we can explore ways to actually
operationalize metrics for these indicators. The transparency of
open source platforms like GitHub provides many opportunities to
develop measures based on publicly available trace data.

In developing measures, we have a strong preference for observ-
ing behaviors rather than asking opinions. Analyzing behaviors is
a way to identify revealed preferences, rather than relying on easily
influenced stated preferences [24, 26].

While we leave operationalization to future work, we illustrate
some possible operationalizatized metrics for the indicators above:

• Propensity: To operationalize the indicator of how quickly
maintainers grant write access to repositories, we could mea-
sure the average time between similar contributor’s first
interaction with the project (e.g., first issue, first pull re-
quest) and when the contributor received write access to
the repository (recognizable in GitHub by the fact that they
can commit directly or close pull request opened by oth-
ers). Notice that adding a contributor is a rare event and the
first interaction and write-access action are only proxies for
underlying phenomenon, hence we do not expect to pro-
vide accurate trust assessments for individual maintainers
or projects, but we expect that this measure can characterize
one aspect of trust at an ecosystem level, especially when
observed longitudinally.

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Lina Boughton, Courtney Miller, Yasemin Acar, Dominik Wermke, and Christian Kästner

Trust Relationship Attack (E�ect) Associated Threats (Cause) Trust Contracts

Project maintainer and new contributor A malicious new contributor is added
as a maintainer to project

The project maintainer (trustor) trusts
the new contributor (trustee) to...

… not include malicious dependencies

… not steal vulnerable information

 … not add malicious codeTake over legit accounts
(stealing account credentials)

Compromise the maintainer system
(exploit vulnerabilities, add malicious
components to maintainer systems)

Run a malicious build job
(tampering with system resources)

Dependency user and maintainer A developer adopts a dependency that
contains malicious code

The dependency user (trustor) trusts the
maintainer (trustee) to…

… not intentionally include malicious
code

… be honest about their intentions and
the functions of their package

Mask legitimate packages
(targeting name or URL resolution)

Dangling references
(using resource identi�ers of orphaned
project’s name or URL)

Malicious package is developed and
advertised as a legitimate package

Trust Relationship Attack (E�ect) Associated Threats (Cause) Trust Contracts

Project maintainer and new contributor A malicious new contributor is added
as a maintainer to project

The project maintainer (trustor) trusts
the new contributor (trustee) to...

… not include malicious dependencies

… not steal vulnerable information

 … not add malicious codeTake over legit accounts
(stealing account credentials)

Compromise the maintainer system
(exploit vulnerabilities, add malicious
components to maintainer systems)

Run a malicious build job
(tampering with system resources)

Dependency user and maintainer A developer adopts a dependency that
contains malicious code

The dependency user (trustor) trusts the
maintainer (trustee) to…

… not intentionally include malicious
code

Mask legitimate packages
(targeting name or URL resolution)

... ...

Figure 2: Example entry from open source supply chain trust contracts table

• Perceived integrity: To operationalize the indicator of whether
new contributors engage in good security practices, we can
look for various aspects in their repositories, such as badges
indicating security practices, use of dependency monitoring
tools, average lag of dependency updates, presence of known
vulnerabilities in a dependency network, past reports of vul-
nerability, and so forth. Existing initiatives such as OpenSSF
Scorecards can also be used where available.

• Perceived benevolence: To operationalize the indicator of a
new contributors history, we could use straightforward ana-
lyzes of commit activities on GitHub through the GitHub API.
We can easily measure their tenure as a maintainer, the num-
ber of maintained and contributed projects, the reputation
of those projects in terms of stars, and so forth.

While we prefer direct measures on trace data because they allow
assess historical trends from past behavior, the decomposition into
indicators can also help to design surveys that ask more nuanced
questions than ‘Do you trust in the software supply chain?’ We
could specifically ask about the different indicators, such as ‘Do you
look at the previous projects of a new contributor and their security
outcomes?’ Also with survey questions, we prefer to ask questions
about behaviors rather than questions about opinions to get more
reliable answers. Especially when such surveys are run yearly on
representative samples of developers, we expect to see clear trends
in how trust develops in the community.

4 FUTURE PLANS
In this paper, we propose an overall process of decomposing trust in
terms of components and contracts, identifying indicators of trust
for each combination of identified component and contract, and
then developing measures for each. We completed the literature
analysis and the identification of contracts based on an existing tax-
onomy of supply chain attacks and we identified a number of indica-
tors, full results are available on Zenodo [1].
We believe this process is reproducible and applicable to other ar-
eas of interpersonal and organizational trust in computing. At the
same time, we leave the actual operationalization and validation of
measures and the assessment of trends in supply chain security for
future work.

We hope that our work enables the following new directions:
• Longitudinal observations of trust: If metrics can be derived
from trace data or surveys are conducted repeatedly, we can

observe trends in trust at large across ecosystems. Instead
of just observing how opinions change, we can track how
behaviors change, e.g., whether developers start to engage
in more risk mitigation strategies that raise the collective
cost for development with open source dependencies.

• Designing signals for better decision making: If our metrics
accurately reveal practices relating to trust, it can be worth
to make these practices transparent to foster better collective
decision making in communities. If our example metric for
benevolence is commonly accepted, we could make it more
visible, e.g., as a community badge or an assessment signal
shown on GitHub.

• Validated measures of trust: We need to validate that our
measures of trust align with developers’ perceptions. Where
revealed preferences derived from actions seem to contradict
stated preferences, interesting research opportunities exist
to explore origins of this mismatch. Ideally, once validated
these metrics can be applied broadly by the research com-
munity, similar to how the field of psychology has validated
surveys to measure and diagnose things like burnout using
the Maslach Burnout Inventory [16].

• Detecting areas of unwarranted trust: Finally, we can compare
trends in trust to actual attacks occurring. Are distrust and
actions that developers take tomitigate risks calibrated to the
actual level of risks faced? Is trust that they have in others
actually warranted? Trust literature has a whole another
dimension of trustworthiness and unwarranted trust [8, 12,
13] which provides an interesting foundation for exploring
trust in the context of actual capabilities of actors.

ACKNOWLEDGMENTS
Special thanks are bestowed upon Chanel for her continued
excellence as a world-class canine researcher. This material is based
upon work supported by the National Science Foundation Graduate
Research Fellowship Program under Grant Number DGE2140739.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not nec-
essarily reflect the views of the National Science Foundation. This
work was supported by the National Science Foundation (award
CNS2206859).

Decomposing and Measuring Trust in Open-Source Software Supply Chains ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] 2024. Supplementary Material for Decomposing and Measuring Trust in Open-

Source Software Supply Chains. Zenodo. https://doi.org/10.5281/zenodo.10372704
[2] Christopher J Alberts, Audrey J Dorofee, Rita Creel, Robert J Ellison, and Carol

Woody. 2011. A systemic approach for assessing software supply-chain risk. In
2011 44th Hawaii International Conference on System Sciences. IEEE, 1–8.

[3] Maria Antikainen, Timo Aaltonen, and Jaani Väisänen. 2007. The role of trust in
OSS communities—case Linux Kernel community. In Open Source Development,
Adoption and Innovation: IFIP Working Group 2.13 on Open Source Software, June
11–14, 2007, Limerick, Ireland 3. Springer, 223–228.

[4] Paul Cormier. 2022. The state of enterprise open source: A red hat re-
port. https://www.redhat.com/en/resources/state-of-enterprise-open-source-
report-2022. Accessed: 2023-09-12.

[5] Graham Dietz and Deanne N Den Hartog. 2006. Measuring trust inside organisa-
tions. Personnel review 35, 5 (2006), 557–588.

[6] Nadia Eghbal. 2016. Roads and bridges: The unseen labor behind our digital
infrastructure. Ford Foundation.

[7] Javad Ghofrani, Paria Heravi, Kambiz A Babaei, and Mohammad D Soorati. 2022.
Trust challenges in reusing open source software: An interview-based initial
study. In Proceedings of the 26th ACM International Systems and Software Product
Line Conference-Volume B. 110–116.

[8] Russell Hardin. 2002. Trust and trustworthiness. Russell Sage Foundation.
[9] Katherine Hawley. 2014. Trust, distrust and commitment. Noûs 48, 1 (2014),

1–20.
[10] Trey Herr, William Loomis, Stewart Scott, and June Lee. 2020. Break-

ing trust: Shades of crisis across an insecure software supply chain.
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-
trust-shades-of-crisis-across-an-insecure-software-supply-chain/. Accessed:
2023-09-12.

[11] Kevin Anthony Hoff and Masooda Bashir. 2015. Trust in automation: Integrating
empirical evidence on factors that influence trust. Human factors 57, 3 (2015),
407–434.

[12] Alon Jacovi, Ana Marasović, Tim Miller, and Yoav Goldberg. 2021. Formalizing
trust in artificial intelligence: Prerequisites, causes and goals of human trust
in AI. In Proceedings of the 2021 ACM conference on fairness, accountability, and
transparency. 624–635.

[13] Kristiina Karvonen. 1999. Creating trust. In Proceedings of the fourth Nordic
Workshop on Secure IT systems (Nordsec’99). 21–36.

[14] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2023. Sok:
Taxonomy of attacks on open-source software supply chains. In 2023 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 1509–1526.

[15] John D Lee and Katrina A See. 2004. Trust in automation: Designing for appro-
priate reliance. Human factors 46, 1 (2004), 50–80.

[16] Christina Maslach and Susan E Jackson. 1981. The measurement of experienced
burnout. Journal of organizational behavior 2, 2 (1981), 99–113.

[17] Roger C Mayer, James H Davis, and F David Schoorman. 1995. An integrative
model of organizational trust. Academy of management review 20, 3 (1995),
709–734.

[18] Courtney Miller, Christian Kästner, and Bogdan Vasilescu. [n. d.]. “We Feel Like
We’re Winging It:” A Study on Navigating Open-Source Dependency Abandon-
ment. ([n. d.]).

[19] Barbara Misztal. 2013. Trust in modern societies: The search for the bases of social
order. John Wiley & Sons.

[20] Vibha Singhal Sinha, Senthil Mani, and Saurabh Sinha. 2011. Entering the circle of
trust: developer initiation as committers in open-source projects. In Proceedings
of the 8th Working Conference on Mining Software Repositories. 133–142.

[21] Mahbubul Syeed, Juho Lindman, and Imed Hammouda. 2017. Measuring per-
ceived trust in open source software communities. In Open Source Systems: To-
wards Robust Practices: 13th IFIP WG 2.13 International Conference, OSS 2017,
Buenos Aires, Argentina, May 22-23, 2017, Proceedings 13. Springer, 49–54.

[22] Jonathan Tallant. 2017. Commitment in cases of trust and distrust. Thought: A
Journal of Philosophy 6, 4 (2017), 261–267.

[23] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In Proc. Int’l Conf. Software
Engineering (ICSE).

[24] Hal R Varian. 2012. Revealed preference and its applications. The Economic
Journal 122, 560 (2012), 332–338.

[25] Dominik Wermke, Noah Wöhler, Jan H Klemmer, Marcel Fourné, Yasemin Acar,
and Sascha Fahl. 2022. Committed to trust: A qualitative study on security &
trust in open source software projects. In 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 1880–1896.

[26] Morteza Zadimoghaddam and Aaron Roth. 2012. Efficiently learning from re-
vealed preference. In Internet and Network Economics: 8th International Workshop,
WINE 2012, Liverpool, UK, December 10-12, 2012. Proceedings 8. Springer, 114–127.

https://doi.org/10.5281/zenodo.10372704
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/

	Abstract
	1 Introduction
	2 Defining Trust and Its Components (Related Work)
	2.1 Defining Trust
	2.2 Components of Trust
	2.3 Contractual Trust

	3 Decomposing and Measuring Trust in Supply Chains
	3.1 Identifying Trust Contracts
	3.2 Identifying Indicators of Trust Components for Each Trust Contract
	3.3 Operationalizing Metrics for Indicators

	4 Future Plans
	Acknowledgments
	References

