
S3C2 Summit 2024-08:
Government Secure Supply Chain Summit

Courtney Miller§, William Enck∗, Yasemin Acar†, Michel Cukier‡,
Alexandros Kapravelos∗, Christian Kästner§, Dominik Wermke∗, Laurie Williams∗

∗North Carolina State University, Raleigh, NC, USA
†Paderborn University, Paderborn, Germany and George Washington University, DC, USA

‡University of Maryland, College Park, MD, USA
§Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT

Software supply chains, while providing economic and software de-

velopment value, are only as strong as their weakest link. Over the

past several years, cyberattacks have increased exponentially, ex-

plicitly targeting vulnerable links in critical software supply chains.

These attacks disrupt the day-to-day functioning and threaten the

security of nearly everyone on the internet, from billion-dollar

companies and government agencies to hobbyist open-source de-

velopers. The ever-evolving threat of software supply chain attacks

has garnered interest from the software industry and the US gov-

ernment in improving software supply chain security. On Thursday,

August 29th, 2024, three researchers from the NSF-backed Secure

Software Supply Chain Center (S3C2) conducted a Secure Software

Supply Chain Summit with a diverse set of 14 practitioners from

10 government agencies. The goals of the Summit were to: (1) to

enable sharing between participants from di�erent government

agencies regarding practical experiences and challenges with soft-

ware supply chain security; (2) to help form new collaborations;

(3) to share our observations from the two summits conducted with

industry in the past year; and (4) to learn about the participants’

challenges to inform our future research directions. The summit

consisted of discussions of six topics relevant to the government

agencies represented, including software bill of materials (SBOMs)

and vulnerability exploitability exchange (VEX); updating vulner-

able dependencies; malicious commits; reducing entire classes of

vulnerabilities; culture; and large language models (LLMs). For each

topic of discussion, we presented a summary of the takeaways from

our previous industry summits and a list of questions to partici-

pants to spark conversation. In this report, we provide a summary

of the summit. The open questions and challenges that remained

after each topic are found at the end of each topic’s section, and

the initial discussion questions for each topic are in the appendix.

KEYWORDS

software supply chain, open source, secure software engineering

1 INTRODUCTION

Software supply chains are only as strong as their weakest link.

Over the past several years, there has been an exponential increase

in cyberattacks speci�cally targeting vulnerable links in critical

software supply chains, disrupting the day-to-day functioning and

threatening the security of nearly everyone on the internet, from

billion-dollar companies and government agencies to hobbyist open-

source developers [8]. The rapid development of state-of-the-art

arti�cial intelligence (AI) integration systems and large language

models (LLMs) has also presented additional novel attack vectors

for software supply chain attacks. The ever-evolving threat of soft-

ware supply chain attacks has garnered interest from the software

industry and the US government in improving software supply

chain security.

On Thursday, August 29th, 2024, three researchers from the NSF-

backed Secure Software Supply Chain Center (S3C2)1 conducted a

day-long Secure Software Supply Chain Summit with a diverse set

of 14 participants from 10 government agencies. The goals of the

Summit were to: (1) to enable sharing between participants from

di�erent government agencies regarding practical experiences and

challenges with software supply chain security; (2) to help form new

collaborations; (3) to share our observations from the two summits

held with industry over the past year [3, 9, 10]; and (4) to learn

about the participants’ challenges to inform our future research

directions.

The Summit was run under the Chatham House Rule, meaning

all participants could freely use the information discussed. However,

disclosing who was present, their a�liations, or who said what is

forbidden. As such, this report also follows the ChathamHouse Rule.

Summit participants were recruited from 10 government agencies

invested in software security. Attendance was intentionally capped

to create an environment that encourages candid conversations

among key stakeholders.

The Summit consisted of discussions of six topics that were de-

cided ahead of time by the participants by voting on which topics

to discuss. The voting process ensured that the topics were of in-

terest and relevant to the government agencies represented. The

discussion topics included software bill of materials (SBOMs) and

vulnerability exploitability exchange (VEX); updating vulnerable

dependencies, malicious commits; reducing entire classes of vul-

nerabilities; culture; and large language models. Each topic was

moderated by one of the S3C2 researchers, beginning with a brief

introduction, a summary of the takeaways from our industry sum-

mits, and a list of questions to spark conversation. Open questions

and challenges for each topic can be found at the end of each sec-

tion, and all questions posed to practitioners are available in the

appendix.

Three S3C2 researchers (two professors and one PhD student)

took notes on the discussion. The PhD student created a �rst draft

1https://s3c2.org/

1



Secure So�ware Supply Chain Center (S3C2)

of this report based on these notes, which the two professors then

reviewed and revised. The Summit participants then reviewed the

draft.

The remaining sections of this report summarize this Secure

Software Supply Chain Summit.

2 SBOM AND VEX

US Executive Order 14028 requires all organizations and contractors

selling software to the federal government to provide a software

bill of materials (SBOM) for said software [4]. SBOMs are a compre-

hensive list of all software components and dependencies present

in a given software artifact, providing consumers with more trans-

parency about the third-party components they rely on directly and

transitively. However, not all vulnerabilities are created equal, and

just because vulnerabilities are present in a dependency does not

mean they a�ect the software or are actually reachable. A Vulnera-

bility Exploitability eXchange (VEX) is a ‘companion artifact’ and is

a form of a security advisory that indicates whether a product is af-

fected by a known vulnerability or vulnerabilities, thus supporting

more e�ective use of SBOMs [1].

2.1 Trust and VEX

While VEX artifacts help support vulnerability triage and reduce the

manual e�ort required to assess whether every vulnerability that

could impact a product does so, there were widespread concerns

regarding trust as consumers of VEX artifacts. Participants pointed

out that it is in the best interest of the large companies leading

the charge on the production of VEX artifacts to show that the

vulnerabilities in question are not, in fact, an issue for their products.

For participants, this led to a question of trust. This lack of trust is

further exacerbated by participants’ complaints that such systems

currently rely on a lot of trust and very few actual veri�cation

steps. One participant expressed interest in employing audits to

assess whether the companies producing VEX artifacts are doing

what they say they are doing. Participants are not currently sure

which VEX producers are trustworthy, and several expressed a

desire for increased transparency regarding VEX artifacts that have

been proven inaccurate. So we can collectively learn from VEX

artifacts that are proven inaccurate and develop a sense of which

VEX producers are actually empirically proven to be trustworthy.

2.2 Consuming SBOMs and VEX

Participants reported experiencing some challenges related to pro-

ducing and consuming SBOMs in classi�ed settings. For example,

consuming SBOMs from a weapons system is di�cult. The SBOM

can often not be consumed on the same network where it is pro-

duced because if a vulnerability is discovered, it raises the informa-

tion’s classi�cation level. Furthermore, the information becomes

top secret if a vulnerability impacts multiple weapons. Existing

SBOM tools will cause spillage incidents, requiring networks to be

shut down.

A participant noted that newer SBOM standards can have vulner-

ability information embedded directly into the SBOM. This led to a

discussion on associating vulnerability information with a given

SBOM. Some participants argued for an approach where SBOMs

only contain static data about the software component once it is

built, and dynamic VEX data (which often changes daily) is stored in

an independent document that refers back to the SBOM itself. Such

an approach would improve clearance-related issues by allowing

practitioners to access the original SBOM without interacting with

vulnerability information. This approach would be similar to Ger-

many’s SBOM policies, which prohibit the inclusion of vulnerability

information in SBOMs [7]. Whether embedding VEX information

directly into SBOMs is bene�cial depends on an agency’s speci�c

data usage, leaving participants split on this topic.

Several participants also emphasized the need to address foreign

nations contributing to open-source digital infrastructure and what

that means for usage. For example, one participant pointed out that

China signi�cantly contributes to Kubernetes, but does that mean

we should care? Are we not going to use Kubernetes? Participants

called for a transition from the presence of foreign nations in open

source supply chains being a boolean �ag to a quanti�able risk.

Some participants also echoed industry concerns about publicly

available SBOMs potentially increasing security risks. One partic-

ipant described how, while a single unclassi�ed SBOM is not a

useful target for a foreign nation, a huge repository of all SBOMs

for civilian systems could be a valuable target.

2.3 Progress Toward Self-Attestation

As one participant put it, the concept of self-attestation is sound, the

execution, not so much. Participants report agencies experiencing

challenges with self-attestation because the SSDF is a framework

that gives guidelines but not concrete requirements, and there is

no discrete checklist to follow [6]. There are also modi�cations

and hoops that agencies have to jump through. Some agencies are

collecting data but are not willing to upload that data to the cen-

tral repository due to the additional work required. Furthermore,

when industry contractors have to meet the self-attestation require-

ments for their vendors, it can be di�cult to get them to reach full

compliance—with some pushing back and requesting additional

compensation for meeting self-attestation requirements. A partic-

ipant noted that some companies are just making their projects

open source so that they do not need to do the attestation. This was

considered a good thing, as we all get to look at the source code.

Participants also questioned enforcement. Currently, some soft-

ware suppliers are taking a reactive stance toward self-attestation.

There were questions about which government agency has the

resources to enforce these policies, like the IRS does for taxes.

2.4 Open Questions

• How can the trustworthiness of VEX artifacts and produc-

ers be evaluated, veri�ed, and made more transparent to

consumers?

• What are best practices for managing SBOM documents

with vulnerability information over their life-cycle, partic-

ularly in classi�ed environments, that signi�cantly compli-

cate their production and consumption?

• How can we e�ectively communicate vulnerability risks in

dependencies to developers when the existence of a vulner-

ability is a higher security clearance than the developer?

2



S3C2 Summit 2023-06: Government Secure Supply Chain Summit

• How canwe quantify the risk associatedwith foreign nation

contributions in software supply chains and transition from

contributions from foreign nations being a boolean �ag?

• How can self-attestation requirements be enforced across

the government? Which government agency has the re-

sources to perform audits and enforce these policies?

3 UPDATING VULNERABLE DEPENDENCIES

Modern software relies on dependencies as building blocks, allow-

ing for rapid reuse and lower upfront development costs. However,

dependencies also have drawbacks, namely dependency manage-

ment. Keeping up with dependency vulnerability patches can be

overwhelming and requires signi�cant manual e�ort from already

overburdened developers. It can be di�cult to determine which

vulnerabilities are necessary to invest time into addressing and

which are not, leading to what some refer to as patch fatigue.

3.1 Current State of the Practice

Some participants report having to go through complex software

review board processes that can sometimes take six to nine months

to get approval for a certi�ed dependency update. This leaves some

participants stuck in a bureaucratic process that signi�cantly hin-

ders the technical updating process. Sometimes, it is more e�cient

to write code from scratch in-house instead. Several participants

argued that moving forward, program managers must incorporate

supply chain security considerations into their risk based decisions,

the same way they consider cost, schedules, and performance.

Similar to the industry, participants reported observing increased

use of software component analysis (SCA) tools, which can aid in

the identi�cation and management of dependency vulnerabilities.

They are also receiving an increasing number of requests for SCA

tools, particularly from newer program o�ces. Some participants

had positive things to say about SCA tools, with a feature that

one practitioner especially appreciated: visualizing the delta code

change in a dependency’s new release. However some participants

cautioned that an over-dependence on such tools by software qual-

ity assurance personnel without a formal education in computer

sciencemay lead to undesired outcomes. Furthermore, quality assur-

ance personnel drive the adoption of such tools to provide feedback

to developers. Still, the analysis and any vulnerability information

identi�ed as a part of it can increase the classi�cation of the infor-

mation to a level higher than that of the developers on the product

team, making it di�cult to actually respond to and address vulner-

able dependencies. Similarly, when vulnerabilities impact multiple

agencies, it can be di�cult logistically to manage triage because

government agencies are siloed.

Generally speaking, the majority of the challenges described by

the participants in this discussion were not technical but rather

organizational and bureaucratic.

3.2 Open Questions

(1) How can the logistical management of vulnerability triage

that a�ects multiple government agencies be done more

e�ciently and collaboratively?

(2) What practices can reduce bureaucratic overhead in the

technical process of updating software library dependen-

cies?

(3) How can agencies bene�t from SCA and similar tools with-

out their reports creating unnecessary bureaucratic burdens

on software developers?

(4) How can SCA report information be shared with developers

while simultaneously accounting for clearance levels and

siloed agencies?

4 MALICIOUS COMMITS

Instead of waiting for the identi�cation of an existing vulnerabil-

ity to exploit, attackers are increasingly using malicious commits

in software supply chains as an attack vector. Through the con-

tribution of malicious commits to a project, attackers can create

vulnerabilities themselves and then exploit them. An example of

this is the recent incident in March of 2024 involving XZ Utils, a �le

compression library used by Linux distributions in systems world-

wide, including Red Hat and Debian. In the XZ attack, a malicious

actor slowly established themselves as an innocuous maintainer

of the XZ project and then used their privileges to gradually cre-

ate a backdoor, allowing attackers unauthorized access to systems

running compromised versions [5]. The backdoor was accidentally

identi�ed before it became widely deployed, but the incident still

caused global shock waves and highlighted the need to improve

strategies for detecting and mitigating advanced persistent threats

(APTs).

4.1 The Current State of Practice

While the malicious commit in the XZ incident was caught be-

fore deployment, participants pointed out that there were almost

certainly countless more similar attacks that were not, leading to

questions about how to proceed in such a landscape. One partic-

ipant cited the practices of an agency that, rather than using the

traditional model of viewing their system as a walled garden with

�rewalls and security measures to keep adversaries out, works un-

der the assumption that adversaries have already in�ltrated their

system. Instead, they focus on design strategies to ensure the con-

tinued normal functioning of their system while adversaries are

‘mucking about.’

Participants pointed out that an underlying issue related to these

attacks is that usually when you incorporate libraries into a product,

they have all the product’s privileges. Hence, such libraries are used

as attack vectors for malicious commits. For example, why did a

commit in XZ, a �le compression library, have the privilege to

exploit SSH in the �rst place? Some participants suggested using

strategies such as component isolation and sandboxing to address

the technical issue presented by malicious commits, noting that

they are not a solution to malicious commits altogether.

Identifying the malicious intent of a commit is challenging. A

participant noted that we need to make it harder to have malicious

commits look like errors. For example, given that there are already

many C/C++ vulnerabilities, attackers will make their malicious

code look like memory vulnerabilities that can be exploited. This

is a bene�t of memory-safe languages. Another participant noted

3



Secure So�ware Supply Chain Center (S3C2)

that malware usually has a payload, which will always be a unique

contribution to the malware. This can help identify intent.

Participants point out that while there is no silver bullet for ma-

licious commits, the integration of strategies to make them harder

to perform and easier to detect could lead to meaningful improve-

ments. Some detection strategies suggested by participants include

code review, scanning, component behavioral analysis, and mea-

suring CPU usage (which is how the XZ backdoor was identi�ed).

However, it should be noted that the detection strategy that will be

e�ective in a given strategy will depend on the context.

4.2 Open Questions

(1) What are best practices for ensuring continued normal

system functioning in a landscape where many other XZ-

like attacks likely remain identi�ed?

(2) What combination of strategies, including restricting li-

brary privileges, component isolation, sandboxing, and

memory-safe language usage, could lead to meaningful

improvements in preventing malicious commit attacks?

(3) Given the performance and development overheads of com-

ponent isolation and sandboxing, how can they most e�ec-

tively mitigate malicious commit risks?

(4) Given a speci�c context, how can a determination be made

about the best malicious commit detection strategies?

5 REDUCING ENTIRE CLASSES OF
VULNERABILITIES

Adopting particular types of programming languages or frame-

works can reduce a system’s risk for entire classes of vulnerabilities.

For example, an industry practitioner at a previous summit pointed

out that many vulnerabilities are memory-related, so moving to

memory-safe languages like Rust can signi�cantly reduce a sys-

tem’s risk for memory-related vulnerabilities. However, doing so

can require signi�cant overhead and be challenging to sell to senior

leadership as a worthwhile investment.

5.1 The Current State of Practice

Participants report increasing use of secure frameworks, but usually

in contexts where systems must perform perfectly reliably. New

hires recently out of school are also incorporating more secure

frameworks where possible, but many of the legacy codes they

interact with use lower-level primitives.

Some participants expressed interest in moving to memory-safe

languages like Rust but cited the lack of reliable translation tools

as a signi�cant hindrance since translating the code manually is

often too costly. Furthermore, Rust’s steep learning curve is also a

concern because it makes recruiting and training developers more

di�cult.

Although participants appreciated the bene�ts of adoptingmemory-

safe languages like Rust, some inherent downsides to Rust, such

as the performance trade-o�s, made adoption less appealing. Ad-

ditionally, some participants in the Space industry are hesitant to

adopt Rust because it tends to throw more errors and faults in

high-radiation environments than other languages already in their

legacy code, like C and C++.

5.2 Open Questions

(1) How can legacy systems be translated to memory-safe lan-

guages like Rust, given the lack of reliable translation tools

and the often prohibitively high cost of manual code trans-

lation?

(2) How can the security bene�ts of translating legacy code

systems to memory-safe languages like Rust be balanced

with the performance trade-o�s and overhead costs?

(3) How can we teach young developers to use secure frame-

works while ensuring they understand the fundamentals

they need to secure legacy code?

(4) How e�ective and automated will Rust translation tools

become? When would be the right time to adopt them?

6 CULTURE

A healthy and robust security culture includes shared responsibility

across all levels of an organization. There is not just a ‘security

team’ with ‘security people’; rather, everyone is involved in security

in the context relevant to them. Recent legislation has changed the

work�ow of software development organizations, but it is unclear

if the culture has caught up.

6.1 Organizational Security Culture

Participants report observing a cultural change that promotes se-

curity as an enabler rather than a roadblock to the development

of high-quality software. Some participants have had success con-

veying this cultural shift to personnel in their agencies when they

drop the security vernacular and instead communicate both the

security needs and the consequences of not meeting those needs

using language, analogies, and examples that resonate with each

personnel member —connecting supply chain monitoring to vul-

nerability risk. Making the security needs more personal to each

personnel supports their internalization of how the organization’s

security needs directly relate to and impact the things they care

about. However, even with e�ective communication, building the

culture will take time, and progress will be slow.

6.2 Software Security as a Liability

Some participants called for a change in how we think about risk

and liability related to cybersecurity events in the United States,

pointing to Europe’s model as an example. In Europe, software is

considered a product, which allows the government to mandate the

liability for cybersecurity events to the companies that produced the

software, making companies more culpable for cybersecurity events

that occur in their products to safeguard consumers [2]. However,

in the United States, software is largely unregulated, making the

delegation of liability for cybersecurity events much more unclear,

with litigation currently being the primary method of settling such

disputes.

Along these lines, several participants also called for standardiz-

ing security engineering practices. They point out that, as United

States software regulations currently stand, no laws place liability

on software producers when and if their products fail in completely

benign standard environments, much less in any other context.

However, some participants pushed back on this, arguing that if

such legal liabilities were put in place, very few people would build

4



S3C2 Summit 2023-06: Government Secure Supply Chain Summit

software because of the risk involved. Participants agreed that ob-

serving how the rollout of the European Union’s recent Cyber

Resilience Act (CRA) could help inform ideas for similar legislation

in the United States.

6.3 Open Questions

(1) What lessons will the European Union’s rollout of the Cyber

Resilience Act provide for legislation in the United States,

and how will those lessons impact how we think about risk

and liability related to cybersecurity events?

(2) What are best practices in security engineering? Should

they be standardized in the United States?

7 LARGE LANGUAGE MODELS (LLMS)

In recent years, many AI-enabled tools leveraging LLMs have been

released onto the market, such as Claude and Copilot, which many

developers have quickly embraced. Developers are increasingly

using LLMs to generate and analyze existing code. However, we

are still in the process of determining which use cases bene�t from

the use of LLMs and which do not.

7.1 LLMs as a Development Support Tool

Participants’ perspectives on using LLMs in their agencies varied

widely depending on their use case. Participants reported several

positive use cases for LLMs that they had either experienced them-

selves or heard about from another agency, including generating

assurance proofs, creating personas for attacks, detecting malicious

commits, �xing documentation problems, and �xing code readabil-

ity. However, because the risks of LLM use are poorly understood

and highly imminent, there was a desire to keep LLMs far away

from more sensitive artifacts like weapons systems.

7.2 LLMs as an Attack Vector

Some participants expressed concerns about the inevitability of

LLMs being leveraged as future software supply chain attack vec-

tors. For example, LLMs could generate a large volume of innocuous

commits as noise to hide a real threat under, essentially DOSing

software maintainers with an avalanche of pull requests.

7.3 Open Questions

(1) How can risks associated with LLMs be clearly communi-

cated with developers so that they can appropriately lever-

age them in their environments?

(2) Can defenses be proactively deployed to mitigate expected

LLM-based supply chain threats, such as DoSing software

maintainers with pull requests?

8 EXECUTIVE SUMMARY

As software consumers, some agencies experienced challenges con-

suming SBOMs and VEX artifacts, including clearance-related is-

sues. Progress toward self-attestation has been di�cult due to a lack

of concrete requirements, and some have struggled to get industry

contractors to fully comply with self-attestation vendor require-

ments. Similar to industry, there has been an increase in the use of

SCA tools to support the detection and mitigation of vulnerabilities

in dependencies; however, the most signi�cant hindrances to these

processes were not technical but rather organizational and bureau-

cratic. The XZ incident highlighted the need to change the way

practitioners reason about system security. While there is no silver

bullet for malicious commits, integrating strategies to make them

harder to perform and easier to detect could lead to meaningful im-

provements. While the use of secure frameworks and memory-safe

languages, such as Rust, can reduce entire classes of vulnerabilities,

logistical issues often hinder their adoption at a wide-scale. Partici-

pants have observed a cultural shift where security is being seen

as an enabler rather than a roadblock, but cultural change takes

time and progress is slow and steady. LLMs are viewed as both a

useful tool in certain contexts and a potential vector for supply

chain security attacks.

9 ACKNOWLEDGEMENTS

A big thank you to all Summit participants. We are very grate-

ful for hearing about your valuable experiences and suggestions.

Laurie Williams and William Enck organized the summit, which

was recorded by Courtney Miller. This material is based upon

work supported by the National Science Foundation Grant Nos.

2207008, 2206859, 2206865, and 2206921. These grants support the

Secure Software Supply Chain Summit (S3C2), which consists of

researchers at North Carolina State University, Carnegie Mellon

University, University of Maryland, and George Washington Uni-

versity. Any opinions expressed in this material are those of the

author(s) and do not necessarily re�ect the views of the National

Science Foundation.

REFERENCES
[1] CISA. 2022. Vulnerability Exploitability eXchange (VEX). https://www.cisa.gov/

sites/default/�les/publications/VEX_Use_Cases_Document_508c.pdf (2022).
[2] European Commisson. 2024. EU Cyber Resilience Act. https://digital-strategy.ec.

europa.eu/en/policies/ cyber-resilience-act (2024).
[3] Trevor Dunlap, Yasemin Acar, Michel Cucker, William Enck, Alexandros Kaprav-

elos, Christian Kastner, and Laurie Williams. February 2023. S3C2 Summit 2023:
Industry Secure Supply Chain Summit. http://arxiv.org/abs/2307.16557 (February
2023).

[4] US White House. May 12, 2021. Executive Order 14028 on Improving the
Nation’s Cybersecurity. https://www.whitehouse.gov/brie�ng-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/ (May
12, 2021).

[5] Jossef Harush Kadouri. 2023. Backdoor Discovered in xz: The Most Advanced
Supply Chain Attack Known to Date. https:// zero.checkmarx.com/backdoor-in-
xz-impacting-multiple-linux-distros-074e86989725 (2023).

[6] NIST. 2022. NIST Special Publication 800-218 Secure Software Development
Framework (SSDF). https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-218.pdf (2022).

[7] Federal O�ce of Information Security. 2023. Technical Guideline
TR-03183: Cyber Resilience Requirements for Manufacturers and Prod-
ucts. https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TR03183/BSI-TR-03183-2.pdf?__blob=publicationFile&v=4 (2023).

[8] Sonatype. 2023. 9th Annual State of the Software Supply Chain. Technical
Report. Sonatype. https://www.sonatype.com/state-of-the-software-supply-
chain/about-the-report

[9] Mindy Tran, Yasemin Acar, Michel Cucker, William Enck, Alexandros Kaprave-
los, Christian Kastner, and Laurie Williams. Sept 2022. S3C2 Summit 2022-09:
Industry Secure Supply Chain Summit. http://arxiv.org/abs/2307.15642 (Sept
2022).

[10] Greg Tystahl, Yasemin Acar, Michel Cucker, William Enck, Christian
Kastner, Alexandros Kapravelos, Dominik Wermke, and Laurie Williams.
March 2024. S3C2 Summit 2024: Industry Secure Supply Chain Summit.
https://arxiv.org/abs/2405.08762 (March 2024).

5

https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Document_508c.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Document_508c.pdf
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://zero.checkmarx.com/backdoor-in-xz-impacting-multiple-linux-distros-074e86989725
https://zero.checkmarx.com/backdoor-in-xz-impacting-multiple-linux-distros-074e86989725
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03183/BSI-TR-03183-2.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03183/BSI-TR-03183-2.pdf?__blob=publicationFile&v=4
https://www.sonatype.com/state-of-the-software-supply-chain/about-the-report
https://www.sonatype.com/state-of-the-software-supply-chain/about-the-report


Secure So�ware Supply Chain Center (S3C2)

A INITIAL DISCUSSION QUESTIONS

(1) Software Bill of Materials From your perspective, how

wide-spread is the practice of: producing SBOMs? Con-

suming SBOMs? Storing SBOMs? Sharing SBOMs? What

challenges are you facing? What will/can SBOMs actually

achieve? How can they be leveraged/used? Are you see-

ing VEX being used? Do you see VEX being helpful or

hurtful? In what ways? How is the implementation of self-

attestation going?

(2) Vulnerable dependencies From the perspective of the

government agencies you interact with, what are their main

concerns and pain points around updating vulnerable de-

pendencies? Do they have policies around when to update?

What kind of testing or other strategies are used before

updating to a new version? How do SCA tools �t into the

decision?

(3) Malicious commits How seriously are the government

agencies you interact with consider malicious commits?

How can malicious commits be detected? What do you

think signals a suspicious/malicious commit? What role

does the ecosystem play in detecting malicious commits?

(4) Reducing entire classes of vulnerabilities Are you mov-

ing toward the use of safer languages? Mandating the use

of any secure frameworks?

(5) CultureWhat changes have you made to support supply

chain security/executive order compliance? What do you

think is needed for nurturing such a security-bene�ting

culture?

(6) LLMs and Supply Chain Security From the perspective

of government agencies you interact with, what is your

perspective on the use of large language models (LLMs)

such as ChatGPT as another supply chain attack vector?

6


	Abstract
	1 Introduction
	2 SBOM and VEX
	2.1 Trust and VEX
	2.2 Consuming SBOMs and VEX
	2.3 Progress Toward Self-Attestation
	2.4 Open Questions

	3 Updating Vulnerable Dependencies
	3.1 Current State of the Practice
	3.2 Open Questions

	4 Malicious Commits
	4.1 The Current State of Practice
	4.2 Open Questions

	5 Reducing Entire Classes of Vulnerabilities
	5.1 The Current State of Practice
	5.2 Open Questions

	6 Culture
	6.1 Organizational Security Culture
	6.2 Software Security as a Liability
	6.3 Open Questions

	7 Large Language Models (LLMs)
	7.1 LLMs as a Development Support Tool
	7.2 LLMs as an Attack Vector
	7.3 Open Questions

	8 Executive Summary
	9 Acknowledgements
	References
	A Initial Discussion Questions

