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Abstract
Despite the inevitable risk that depending on abandoned open
source dependencies poses, many developers feel a lack of resources
and guidance on how to deal with this. Automated detection of aban-
donment is feasible, but not all abandoned dependencies impact
a downstream project equally. In this paper, we perform a need-
finding interview study with 22 open source maintainers to explore
what makes the abandonment of certain dependencies impactful to
their project, as well as their information needs and design require-
ments for such an automated notification tool. We find four main
factors, the depth of integration, the availability of alternatives,
the importance of the functionality, and external environmental
pressures. Using this emerging theory, we then build an LLM-based
classifier to predict the impact of a dependency’s abandonment in a
given context, and evaluate it with an independent user study with
124 open source maintainers. Our results show that the classifier is
effective at predicting whether a dependency’s abandonment would
be impactful to a project, and that theory-based explanations given
by the LLM are useful to developers when making judgments about
the potential impactfulness of a given dependency’s abandonment.

1 Introduction
Open source software is used by nearly everyone and everything on
the Internet [75, 98]. With this widespread reliance has come wide-
spread expectations surrounding ongoing maintenance and support
for these projects [30, 32]. However, these expectations are ill-fated,
as recent work has shown that open source dependency abandon-
ment, hereafter abandonment for short, is a prevalent issue [20, 22],
even among widely used packages [9, 64].

Developers are concerned about abandonment (e.g., online [85]),
particularly from a security perspective, as abandoned packages
usually do not receive critical security patches [65, 100, 104]. In
theory, developers could manually identify dependency abandon-
ment and proactively respond before it potentially causes a concrete
problem, but doing so is often infeasible at scale in practice [65], as
the process many developers rely on is time- and effort-intensive.
Automated tooling to identify abandonment is emerging,1 as part
of a broader range of software component analysis (SCA) tools to
support other aspects of dependencymanagement, e.g., dependency
updates and security vulnerabilities. Adoption of SCA tools has
become an industry-wide best practice [18, 76, 88, 91], and has been
shown to help improve dependency management practices [40, 67].

However, the effectiveness of these tools is dampened by per-
vasive usability issues, with a primary issue being overwhelming
1Examples include FOSSA’s Risk Intelligence service, currently in beta, and a recent
research prototype by Mujahid et al. [69]. Several papers also describe prototypes to
identify packages in decline [54, 94].

Importance of Functionality: How important is the 
functionality provided by the dependency to the 
project? 

Depth of Integration: How difficult is it to replace 
the dependency, considering the depth of its 
integration in the project's code base?

Availability of Alternatives: How difficult is it to 
replace the dependency, considering the availability 
of suitable alternatives?

External Environmental Pressure: How likely is it 
that external environmental changes will force the 
project to act on the dependency's 
abandonment?

Contextual Factors Influencing Impact of Abandonment

Figure 1: Four categories of context-specific information that
affect the impactfulness of dependency abandonment.

developers with too many notifications, especially those users deem
incorrect, unimportant, or irrelevant to their project [33, 40, 67, 83],
which can lead to notification fatigue, ignoring tool notifications,
and tool disengagement [33, 40, 62, 67, 89]. The issue of overwhelm-
ing developers with too many spurious notifications is prevalent
across automated software engineering (SE) tooling [34, 48, 83, 89,
97]. Research on overcoming notification fatigue in such contexts
suggests that only sending developers notifications they deem rele-
vant can help alleviate the issue [97].

Returning to abandonment, prior research similarly indicates
that most developers do not care about the abandonment of all their
dependencies equally; instead, they are primarily concerned about
abandonment they believe would be impactful to their project [65].
Because of this, although only sending developers relevant notifi-
cations may sound like a straightforward solution, in the context
of SCA tools to identify dependency abandonment, which we will
refer to as the catchall term Abandabot, it leads to the non-trivial
question: What dependency abandonment will be impactful to a
particular project given the context of their dependency usage?
With the goal of exploring this overarching question in specific
software projects, we ask our first research question (RQ):

RQ1 How does the context of a project’s dependency usage affect
whether that dependency’s abandonmentwould be impactful
to the project?

Research on the development of automated tools for developers
has demonstrated that it is important for such tools to (1) be de-
signed in a way that integrates organically with existing developer
workflows; and (2) provide relevant succinct evidence for auto-
matic judgments [33, 48, 68]. With the goal of further informing
the design of a developer-centric Abandabot tool, we ask:
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RQ2 What are the information needs and design requirements for
a tool to automatically identify dependency abandonment,
aka Abandabot?

Through our research, we learned that it is sometimes difficult to
make judgments of abandonment impact without relevant context
information, and many participants confirmed that even making
such judgments once, to set up an Abandabot tool, would be un-
realistically tedious. Thus, we suggest a mechanism for predicting
which abandonment will be impactful for a project to create an
automatic pre-configuration—an idea enthusiastically supported by
most participants. We design, implement, and evaluate Abandabot-
Predict, a theory-driven LLM-based classifier to predict the impact
of abandonment using context-specific reasoning and information
derived from our theoretical understanding developed in RQ1. To as-
sess our ability to automatically predict the impact of abandonment
using our theory-driven classifier, we ask our third RQ:

RQ3 How well can Abandabot-Predict approximate human judg-
ments on whether the abandonment of a given dependency
would be impactful to a project?

In this paper, we develop a theoretical understanding of how the
context of a project’s dependency usage affects the impactfulness
of its potential abandonment, design and implement a theory-based
classifier to predict the impact of abandonment, and assess its ef-
fectiveness. Our approach consists of three steps: We first conduct
an exploratory semi-structured formative need-finding interview
study with 22 developers to explore what makes the abandonment
of some of their dependencies impactful to their project and others
not, as well as what information needs and design requirements
they would have for an Abandabot tool. Next, we design and imple-
mented a classifier, Abandabot-Predict, for predicting abandonment
impact using theory-driven reasoning and context-specific infor-
mation. Finally, we perform an independent evaluation study with
124 developers to assess the effectiveness of our classifier and the
perceived usefulness of the contextual information derived from
our theory when making judgments of abandonment impact.

We found that developers often cite four categories of context-
specific information when considering how their usage of a depen-
dency changes the impact of its abandonment on their project: the
depth of integration, the availability of alternatives, the importance
of functionality, and external environmental pressures (cf. Fig. 1).
Through our independent evaluation study, we leaned that our
classifier is effective at predicting project-specific judgments of im-
pactfulness and that the theory-driven context-specific information
is perceived as useful to developers when making judgments.

In summary, we contribute: (1) a theoretical understanding of
how the context of a project’s dependency usage affects the im-
pact of abandonment; (2) a list of information needs and design
requirements for an Abandabot tool; (2) a detailed methodology for
collecting and identifying project-specific context to evaluate the
impact of abandonment; (3) a classifier to predict the impact of aban-
donment; and (4) an evaluation assessing the effectiveness of using
a theory-based classifier to predict the impact of abandonment as
well as the perceived usefulness of context-specific information
when making judgments of the impact of abandonment.

2 Background and Related Work
2.1 Open Source Sustainability & Abandonment
Open source software serves as the ubiquitous building blocks of our
digital lives [75], acting as the foundation for over 90% of theworld’s
software [98]. With this widespread reliance has come widely held
expectations that the maintainers of these projects are responsible
for providing the ongoingmaintenance and support effort necessary
to keep the software up-to-date and meet user demands [30–32].
Despite these expectations, in reality, the continued maintenance
of many open source projects is no sure thing.

Most open source maintainers are still unpaid volunteers to this
day [93], and most projects rely on a small number of overworked
and underappreciated maintainers to do most of the work [10, 58].
Open source maintainers may disengage and stop contributing at
any point for normal reasons that we cannot prevent e.g., switching
jobs, a lack of time, or losing interest [15, 21, 35, 59, 66, 99]. When
maintainers do disengage, more often than not, no one else steps up
and the project becomes fully abandoned [9], making abandonment
an inevitable risk even among widely used projects [64].

This disconnect between the expectations placed on and the
reality of open source has motivated the need to study and improve
open source sustainability, which is an active and vibrant research
area. However, most sustainability research thus far has primarily
focused on studying and improving various processes, phenomena,
and characteristics to support the goal of keeping specific open
source projects alive and maintained [65].

A notable exception is a recent line of work by Miller et al. which
argues that due to our collective widespread reliance on open source
and the inevitable risk abandonment, that sustainability research
should expand its focus to include “supporting the sustainable use
of open source by helping developers better prepare for and deal
with dependency abandonment and its consequences when it oc-
curs” [64, 65].2 Many developers feel they have limited support
when facing abandonment [65] adn would like to identify abandon-
ment before it results in a concrete issue so they can respond with-
out immediate time pressures (at least for certain dependencies),
yet most rely on time- and effort-intensive manual investigation
of various project characteristics, e.g., commit frequency, lack of
updates, and unresolved issues and pull requests, making proactive
identification at scale infeasible in practice [65].

There is also quantitative evidence suggesting that an Abandabot
intervention that makes abandonment more visible is a promis-
ing direction: projects react significantly faster when explicit no-
tice of abandonment3 is provided rather than when maintenance
silently ceases [64], demonstrating that increasing information
transparency surrounding abandonment can support more timely
downstream responses. In this paper, we support the sustainable
use of open source by informing the design of a developer-centric
Abandabot tool to assist developers facing abandonment.4

2Other exceptions include work exploring package-level deprecation in the Python
ecosystem [103], identifying alternatives for packages in decline [69], and measuring
and presenting community and library health metrics to potential adopters [70, 95].
3i.e., whenmaintainers explicitly express their intention to no longer maintain the pack-
age e.g., by flagging the repository as archived or adding a note to the README [64]
4It is important to note that there is no widely agreed upon definition of when inactivity
crosses the threshold into abandonment or what signals of activity should be used
to make that determination, with many different operationalizations being used in
previous work on the subject [9, 21, 44, 63–65, 95]. In this paper, we avoid this issue by



Designing Abandabot: When Does Open Source Dependency Abandonment Matter? Conference’17, July 2017, Washington, DC, USA

2.2 Dependency Management Tooling
Although there are significant benefits to using open source de-
pendencies [30], there are also downsides, namely dependency
management. Numerous calls for improved dependency manage-
ment practices have been made, including an executive order from
the US White House [7], yet research consistently demonstrates
that most developers neglect updating dependencies, including up-
dates with known vulnerabilities, even when notified by automated
tools [12, 16, 26–28, 47, 50, 61, 79–81, 87, 90, 102]. In fact, there
are entire organizations like the Open Source Security Foundation
(OpenSSF) whose primary mission includes developing research,
best practices, evaluation metrics, and enterprise tools to make it
easier to sustainably secure the development, maintenance, and con-
sumption of the open source software (OSS) we all depend on [1, 76].

Although, as discussed, there is an unmet need for Abandabot
tooling, there are many well established software component anal-
ysis (SCA) tools to support other dependency management tasks,
such as dependency updates, security vulnerabilities, and license
management, including Snyk Bot [5], Dependabot [3], Socket [6],
and Sonatype [86].These tools are designed with the intention of re-
ducing the developer workload by automating routine dependency
management tasks e.g., keeping the dependencies of a project up to
date by notifying developers of update opportunities and creating
automated pull requests with proposed updates. Adoption of such
tools has become an industry-wide best practice [18, 76, 88, 91],
and research has shown that their adoption can lead to positive
improvements in dependency management practices [40, 67].

Yet research on the usability of those same tools has found that
these effects are tempered by pervasive usability issues, with one
of the primary issues being sending developers too many noti-
fications, especially those they deem incorrect, unimportant or
irrelevant to their project [33, 40, 67, 83]. These notifications are
often perceived as noise and can distract, annoy, and overwhelm
developers causing information overload and notification fatigue
which can lead to developers ignoring the tool or disengaging
altogether [33, 40, 62, 67, 89]. The issue of overwhelming devel-
opers with too many spurious notifications is pervasive across
automated tooling for many different software engineering (SE)
tasks [34, 48, 83, 89, 97] e.g., static analysis tools [11, 42, 84], auto-
mated fault detection tools [51], and security alert tools [49, 77, 78].

Research on overcoming notification fatigue in such contexts
has suggested that only sending developers notifications they deem
relevant may alleviating the issue [97]. Sawdowski et al. coined
the term effective false positive which refers to automated tool no-
tifications that are technically correct but that do not matter to
the user in practice. Since many developers are not equally con-
cerned about dependency abandonment because the impact on
their project can vary widely [65], we define effective false posi-
tives in the context of Abandabot tools as notifications about the
abandonment of dependencies that are not considered impactful to
the project by its maintainers. Although only sending developers
relevant notifications may sound straightforward, it leads to the
non-trivial question of ‘what abandonment will be impactful to a

discussing either hypothetical abandonment, cases where explicit notice is provided,
or cases where participants independently judge that abandonment occurred, allowing
us to avoid the question of what constitutes abandonment and instead engage in
discussions within the context of assuming abandonment has already been identified.

particular project given the context of their dependency usage?’
Which we we take a step towards answering in this paper.

3 Need-Finding Interviews
To achieve our goals of (1) understanding how the context of a
project’s dependency usage affects the impact of abandonment on
the project (RQ1); and (2) identifying what information needs and
design requirements developers have for an Abandabot tool (RQ2),
we begin by performing a need-finding interview study.

3.1 Research Design
To answer RQ1 and RQ2, we conducted a semi-structured forma-
tive need-finding interview study [53]. We used an interview-based
design because we wanted to have nuanced discussions with devel-
opers about their experiences, opinions, and reasoning since this is
a relatively unexplored topic. Furthermore, interviews are a popular
method for eliciting information needs and design requirements
from tool users in human-computer interaction research [72].

To contextualize discussions about the project’s dependencies,
their maintenance status, and as a starting point to help spark
more rich grounded discussions about tool design, we developed a
preliminary Abandabot prototype which we used in the interviews
as a method of experience prototyping [14, 39] (cf. paper appendix
included in the supplemental materials on HotCRP). We concluded
running interviews whenwe reached our predetermined theoretical
saturation criteria of three consecutive interviews without any new
major insights or changes to our theoretical understanding [36].

Interview Protocol. We designed the interview protocol with two
focuses, aligned with the two research questions we aim to explore
in the interviews, RQ1 and RQ2 .

The first focus was understanding which of a given project’s
dependencies abandonment would be impactful and noteworthy
and why considering the context of their dependency usage. To
explore this focus, we discussed several specific dependencies as
examples, asking questions about the following topics for each
dependency: (1) if and how the dependency’s abandonment would
impact their project; (2) how the context of their usage of the de-
pendency affects the impact of abandonment; and (3) whether they
would want to be made aware of its abandonment and why. For
each participant we identified at least one abandoned dependency
prior to the interview as we will describe. After obtaining consent,
we discussed one of the abandoned dependencies. We then intro-
duced the Abandabot prototype and asked the participant explore it
and point out any dependencies whose current maintenance status
was concerning to them then we discussed several examples (if
they had any). Next, we asked the participant to identify which of
their dependencies’ abandonment they believe would be particu-
larly impactful to the project, which we then discussed. In most
interviews, we discussed at least three dependencies in-depth. We
intentionally focused discussions on specific dependencies to get
concrete insights. Because some participants had different mental
models of what constituted impactful and therefore noteworthy
abandonment, sometimes additional probing was required to get to
the root of why they considered certain abandonment impactful.

The second focus was on eliciting design requirements and in-
formation needs for an Abandabot tool using a participatory design
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process [46, 71], in which asked questions about: (1) tool and noti-
fication modality; (2) preferences regarding customizing tool con-
figurations; and (3) what dependency information and additional
context they would like to receive with abandonment notifications.

Identifying and Recruiting Participants. Because we wanted
to speak with developers that had knowledge of and experience
with abandonment, our goal was to recruit maintainers open source
projects that have faced or currently face dependency abandon-
ment. We focus our participant pool on JavaScript projects because
JavaScript has the largest package manager ecosystem, npm [88],
prevalent dependency management issues [23, 26, 104], a com-
prehensive registry and configuration design that makes tracking
dependency usage relatively straightforward, and it is the language
our Abandabot prototype currently supports. We also wanted to
ensure that the projects we reached out to (1) had recent activity
to increase the likelihood of response (i.e., at least 10 commits in
the past year); and that (2) at least one maintainers with an email
address listed on their public GitHub profile for recruitment.

We used two complementary strategies to identify participants.
First, we started with a list of abandoned packages in the npm
ecosystem from previous research [64], then worked backward to
identify dependent projects that fit our criteria. Since we did not
reach our saturation criteria after exhausting the list of candidates
from the first strategy, we performed a second strategy in which
we worked forward, first identifying a broad pool of projects that
fit our criteria (excluding the abandoned dependency criteria) then
identifying the subset that had at least one abandoned dependency.

For both strategies we used World of Code (WoC) Version V to
identify candidate projects on GitHub [57]. To scrape each project’s
package.json and recent commits, we cloned each project’s reposi-
tory for strategy one and used the GitHub REST API for strategy
two. Additionally, for strategy two, to identify abandoned dependen-
cies, we cross-referenced each dependency with the npm registry,
using the npm API to identify the subset of dependencies that had
either (1) been flagged as deprecated; or (2) not published a release
in at least three years. Finally, we collected each maintainer’s email
address from their public GitHub profile using the GitHub REST
API if available. To encourage participation, we sent each partici-
pant a personalized email invitation and offered them a USD $20
Amazon gift card upon completion of the interview as a token of
our gratitude and compensation for their time.

Data Collection and Analysis. In total, we conducted 22 inter-
views via Zoom which lasted between 30 and 45 minutes. Since our
aim was to develop an understanding of a relatively unexplored
phenomenon through the experiences of participants, we used the-
matic analysis to qualitatively analyze the interview data [13, 19, 92].
We performed our data collection and analysis procedures simul-
taneously and iteratively [39]. While running the interviews we
frequently oscillated between the stages of open coding, exploring
the rich transcripts, analytically memoing and engaging with the
data, refining the codes and coding framework, and searching for
themes in the data [24]. We used an interwoven constant compar-
ative method to refine our emerging categories, comparing and
adjusting our emerging categories using interview data [24].

The analysis began with the first author performing open-ended
inductive coding of each interview transcript as we went. Once the

first eight interviews were completed, all authors met and engaged
in an in-depth analysis of the codes, coding frame, and interview
guide, with adjustments being made as necessary. Once the authors
had come to a consensus, the first author re-coded the first eight
interviews, conferring with another author on any uncertain cases.

Limitations. Our interview study is affected by several limitations
commonly experienced in such research. The transferability of our
findings may be influenced by self-selection bias among partici-
pants [60, 82], as there could be differences in beliefs and opinions
between the candidates in the full sample we invited to partici-
pate and the subset that did. Sampling limitations may impact the
findings since we specifically identified participants who (1) main-
tain open source projects; and (2) have experienced dependency
abandonment, which does not represent the full range of JavaScript
developers. Generalizations beyond the sampled participant distri-
bution should be done with care.

3.2 RQ1 Results - What Influences the
Importance of Abandonment

Through the need-finding interviews, we identified four categories
of context-specific information that participants commonly cited
when considering how their use of a given dependency affects the
impact its abandonment would have on their project: The depth
of integration, the availability of alternatives, the importance of
functionality, and external environmental pressures (cf. Fig. 1). We
discuss each category in turn below. However, we first briefly dis-
cuss a related meta-finding from the interviews.

Meta Finding: Difficulties Surrounding Making Judgments
About Abandonment Impact. In interview discussions, the four
categories of information were not always made explicit. Many
participants did not cite them directly, instead mentioning low-level
pragmatic signals representative of the categories. Some had trouble
articulating why they believed the abandonment of a particular
dependency would be impactful to their project even when they
were confident in the judgment; and sometimes the justifications
would come up out of context after several additional examples had
been discussed, giving them an opportunity to develop a deeper
understanding of their own beliefs through the conversation.

Several participants occasionally had difficulty making judg-
ments about the impact of abandonment for specific dependencies,
especially without relevant contextual information. For the few
cases where this occurred, we either allowed participants to look
up the relevant information if time allowed, or skipped them.

Depth of Integration. The first category is how difficult the de-
pendency would be to replace considering the depth of its usage
integration in the code base. Deeply integrated dependencies were
often considered more of a cause of concern due to the increased
likelihood that they will take more time and effort to replace.

As discussed earlier, occasionally participants did not explic-
itly use the term depth of integration in discussions; instead, they
discussed representative pragmatic signals, including the number
of files it is used in, the number of calls made to its API, and the
number of functionalities it is used for, and the frequency of its
usage in GitHub actions and npm scripts.
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Availability of Alternatives. The second category is how difficult
the dependency would be to replace considering the availability of
suitable replacements. Dependencies with more potentially suitable
alternative packages were often considered easier to replace, and
thus potentially less concerning if abandoned.

When evaluating the prevalence of alternatives, participants con-
sidered how many packages could provide the same functionality
and how similar their APIs are, which was an important considera-
tion since it could significantly impact the difficulty of migration,
e.g., does the alternative have an identical API that allows them to
simply replace the import statement or do they need to refactor all
the code using the dependency.

Participants also considered other potential sources of alterna-
tives, including well-maintained popular forks or native solutions
built into the language or framework they are using. In addition,
participants considered how complex the functionality provided
by the dependency is and how feasible it might be for them to
implement the functionality themselves. If the functionality being
used is simple, some participants considered the potential abandon-
ment less concerning because they could potentially remove the
dependency and replace it with their own in-house implementation.

Importance of Functionality. The third category is how essential
the functionality provided by the dependency is to the project. The
abandonment of dependencies that provide trivial or non-essential
functionality was often considered less concerning than that of de-
pendencies providing essential functionality. For example, “Whether
or not I want to be informed of “What’s the current state of affairs
with certain packages” depends a lot on how important I think they
are to my own app. For example, the package you mentioned in the
beginning [dependency], I don’t care if it is abandoned or not, because
it has literally no impact on the functionality of the app.” (P20).

In contrast to the category of depth of integration, which was pri-
marily focused on how difficult replacement would be considering
how much and how deeply the dependency is used, this category is
about how important the functionality provided by the dependency
is to the project irrespective of how deeply integrated it is. Although
there was a common sentiment that the abandonment of dependen-
cies providing important functionality is much more concerning
than that of dependencies providing non-essential functionality,
there was no common ground on what constituted important versus
non-essential functionality. What functionality, or even what cate-
gory of functionality, was considered essential was project-specific
and varied widely depending on the type of project in question, its
primary functionalities, and the participant’s philosophical beliefs.

Discussions surrounding the importance of functionality relied
on the unspoken assumption that hypothetical dependency aban-
donment may cause a concrete issue down the line, and participants
often considered the varying levels of concern they would have
surrounding those issues based on how essential the functionality
provided is to their project. For example, some participants were not
concerned about the abandonment of testing dependencies because
they were considered non-essential and did not directly impact the
final product, so even if a concrete issue were to occur as a result
of the abandonment, it would not pose a significant roadblock to
the project. However, in other projects, testing dependencies were
considered of particular importance due to the nature of the project,

the guarantees provided to users, or the test-driven development
practices used. To complicate matters further, even in a project
where dependencies that provide a particular functionality were
considered important, e.g., testing dependencies, not all depen-
dencies that provide that functionality are necessarily considered
important, due to the different applications of that functionality
across the project, which may be of varying importance.
External Environmental Pressures. Finally, the fourth category
is how much external environmental pressure the dependency has
to continue to evolve and keep up with ongoing environmental
changes. The abandonment of dependencies in ecosystems that
exert more external pressure to continue evolving with the envi-
ronment was often more concerning to participants because they
anticipated that the abandonment may cause some sort of incompat-
ibility issue sooner rather than later. For example, a dependency like
@typescript-eslint/parser, which is a development tool plugin for
typescript, would have to keep up with updates in the larger type-
script ecosystem or become increasingly stale over time, whereas
dependencies like isarray or left-pad that provide simple, narrowly-
scoped functionality and that have limited external dependencies
could potentially be unmaintained for an extended period of time
without users experiencing any adverse effects (barring any rogue
issues like a zero-day vulnerability or an incident like the left-pad
one [74]). This aligns with a recent study that found that language
incompatibility issues were a common concrete issue faced by de-
velopers dealing with dependency abandonment [65].

Participants were also that they could face the opportunity cost
of not being able to use new features of other dependency updates
that are incompatible with the abandoned dependency. For example,
“The lack of updates means they’re not going to use the latest version
of chromium typically or chrome under the hood. That means at some
point I’ll be affected because one of the pages I load is going to use a
feature that a previous version of Chrome does not support.” (P19).

When evaluating the amount of external environmental pres-
sure on a given dependency, participants considered the size and
complexity of the dependency, the number of unresolved issues and
pull requests, and the frequency of changes in the dependency itself
as well as the ecosystem it is apart of, with contexts with more fre-
quent changes potentially being an indicator that the dependency’s
abandonment could cause issues sooner.

Key Insights: When assessing how their use of a given
dependency affects the impact its abandonment would have
on their project, participants considered the depth of inte-
gration, the availability of alternatives, the importance of
functionality, and external environmental pressures.

3.3 RQ2 Results - Tool Design Requirements
and Information Needs

Through need-finding interviews, we investigated the information
needs and design requirements participants have for an Abandabot
tool, and we now discuss our findings relating to both.
Information Needs. Evidence for Judgment of Abandonment. Partic-
ipants wanted concise relevant evidence supporting the automated
judgment of abandonment. Whether that be an explicit notice of
abandonment provided by maintainers, or activity patterns that
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were used to make the judgment, i.e., how long the dependency has
been inactive for and what activity signals were considered.

Information About Dependency Usage in Project. Participants
wanted summary information about their dependency use so they
could get a sense of how impactful the abandonment may be and
how much work replacement might take, aligning with concerns
surrounding the importance of functionality (cf. Sec. 3.2). Many
of the specific signals requested were the same as the pragmatic
signals for depth of integration (cf. Sec. 3.2).

Additional Information About Dependencies. Some participants
wanted additional information about the dependency to help them
get a better sense of the situation, e.g., whether there are known
security vulnerabilities and who supports the dependency.

Information About Potential Alternatives and Next Steps. Finally,
participants wanted information about possible alternatives and
possible next steps. The type of information requested aligned
closely with the type of information considered when evaluating
the availability of alternatives (cf. Sec. 3.2).
Design Requirements. Tool Modality. Most participants wanted
the tool directly integrated into GitHub. Some were also interested
in having a complimentary web-based dashboard they could refer-
ence when seeking more detailed information about a particular
dependency or a more holistic view of the state of their project’s
dependencies. However, some preferred direct integration into their
IDE, just a dashboard, or a postinstall script in npm.

Tool Configuration. Most participants were interested in Aband-
abot automatically proposing a default pre-configuration predicting
which abandonment would likely be impactful to their project that
they could then modify as needed– rather than requiring users to
categorize each dependency or assuming that all of them would be
impactful. For example, “I would like it during the initial setup to tell
me “We think these are the most important ones.”… and then you’d
[have] a default recommended list, and then you could just customize
it or remove [dependencies from the to-notify list] from there.” (P1).

Notification Modality. There was a wide variation in terms of the
notification modality preferred by participants. As such, an Aband-
abot tool should have robust notification configuration options,
allowing users to select the notification modality and frequency.

Key Insights: Developers wanted justification for aban-
donment judgments, information about dependency usage,
insight into dependency risks, and guidance on next steps.
Developers were interested in intelligent pre-configurations
and flexible tool integration.

4 Abandabot-Predict: Predicting Impactful
Dependency Abandonment

In the need-finding interviews, we identified four categories of
context-specific information that participants often cited when
making judgments about the impact of abandonment: the depth
of integration, the availability of alternatives, the importance of
functionality, and external environmental pressures (cf. Sec. 3.2).

A recurring theme from the interviews is that the process of
judging the impact of abandonment is sometimes highly ad hoc
and context-dependent, requiring in-depth domain knowledge and

hard-to-collect information–even when participants know what
they are looking for.Thus, the process is not easily operationalizable
using simple heuristics or program analysis techniques.5 However,
the ability to automatically identify impactful dependency aban-
donment is one of the key design requirements for tools to support
dependency abandonment (cf. Sec. 3.3). In this paper, we conjec-
ture that large language models (LLMs), with proper theory-driven
reasoning and contextual information, can serve as a tool to pro-
vide accurate abandonment impact predictions to support developer
decision-making. We design, implement, and evaluate Abandabot-
Predict, an LLM-based classifier for predicting abandonment impact
using theory-driven reasoning and context-specific information.

4.1 Approach
At a high-level, Abandabot-Predict takes in a GitHub repository
and a dependency name, extracts context-specific information about
dependency usage, and constructs a theory-based reasoning prompt,
based on the four categories of information and the contextual
information extracted (cf. Fig. 2).The prompt is then fed into an LLM
which performs a series of sequential reasoning steps culminating
in a final binary prediction of impactful or not impactful. We now
describe the two key components of Abandabot-Predict: extracting
contextual information and theory-based prompting below.
Extracting Contextual Information. The goal of this component
is to extract a body of relevant information informed by our theo-
retical understanding that would be sufficient for a human expert
to make a judgment on the impact of abandonment, so that an LLM
can conduct similar reasoning and judgments (i.e., the Retrieval-
Augmented Generation pattern [52]). It is necessary to extract a
subset of all information available, as Abandabot-Predict needs
to work on large software projects, whose size well exceeds the
context window of any current LLMs. Therefore, we extract the
following theory-driven contextual information:
(1) The project README, which provides contextual information

regarding the purpose and domain of this project.
(2) The dependency README, which provides contextual infor-

mation regarding the purpose and domain of the dependency.
(3) The project package.json file, which provides relevant depen-

dency and configuration information (e.g., what dependencies
are used together and what commands are being used);

(4) A list of locations where the dependency is used, plus 𝑊 (𝑊
is a configurable parameter) surrounding lines around each
location, providing context on how and why the dependency
is used within the project, and for what purpose.

The first three pieces of contextual information are trivial to extract.
To obtain the final piece, Abandabot-Predict combines keyword
search with global data-flow analysis [73]: The former identifies all
locations whether the dependency name appears, possibly covering
documentation and configuration files; the latter identifies all loca-
tions in the source code where an API of the dependency is possibly
used. If a dependency is used in more than 𝑁 different locations (𝑁
is a configurable parameter), Abandabot-Predict will downsample
only 𝑁 locations, to avoid exceeding the maximum-allowed context

5e.g., several participants pointed out that the number of API calls is not a comprehen-
sive signal for depth of integration— Since, for example, a core development tool can
have little usage in the source code, but its abandonment would likely be impactful.
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Project: nasa/juggling-club
Dependency: puppeteer

Extract Contextual Information

Theory-Based Prompting Evaluation & Prediction

package.json

Project README

Dependency README

Usage Context

You are an expert JavaScript developer building a tool to notify a 
project's maintainers when one of the project's dependencies 
becomes abandoned. However, instead of notifying them when any 
of their dependencies are abandoned, you want to only notify them 
about the abandonment of dependencies that are likely important 
and impactful to the project given the context of their dependency 
usage, so as to minimize notification fatigue. 

I am going to ask you important dependency management 
questions regarding whether a dependency's future hypothetical 
abandonment is likely to be impactful and therefore noteworthy to 
the project. For context, I will provide you with [context] I want you 
to answer the following four 
questions based on the information I provided:

1. How important is the functionality provided by the dependency 
to the project? 

2. How difficult is it to replace the dependency, considering the 
depth of its integration in the project's code base?

3. How difficult is it to replace the dependency, considering the 
availability of alternative packages that could serve as suitable 
replacements and provide the same functionality?

4. How likely is it that external environmental changes will force 
the project to act on the dependency's abandonment?

For each question, I want you to provide a score on a scale from 1 
to 5, where 1 is the least important, difficult, or likely, and 5 is the 
most important, difficult, or likely. Along with the score, please 
provide detailed, specific reasoning behind the score. Your 
response for each question should be placed in the top-level 
"importance", "integration", "alternatives", and "likelihood" fields of 
your JSON response, respectively. For each of these fields, you 
should provide a "reasoning" field with your reasoning.

…… [rest of prompt omitted]

{

 "importance": {

  "reasoning": "Puppeteer is used in multiple critical 

parts of the project...",

  "score": 5

 },

 "integration": {

  "reasoning": "Puppeteer is deeply integrated into 

the project's codebase...",

  "score": 5

 },

 "alternatives": {

  "reasoning": "While alternative such as Playwright 

or Selenium exist, each has its own set of features and 

limitations...",

  "score": 3

 },

 "likelihood": {

  "reasoning": ”Shifts in browser automation 

technologies...",

  "score": 2

 },

 "reasoning": "Considering the critical role Puppeteer 

plays in the project's operations, its deep integration 

into the codebase, the challenges associated with 

finding and transitioning to a suitable alternative, the 

abandonment of Puppeteer would likely be directly 

impactful to the project.",

 "impactful": true

}

[start of src/find-specs.js]

3 import puppeteer from 'puppeteer';

...

133  const browser = await puppeteer.launch();

134  try {

135   const page = await browser.newPage();

136   proposals = await page.evaluate(...);

...

145  finally {

146   await browser.close();

[end of src/find-specs.js]

# Web specifications
This repository contains a curated list of technical Web 
specifications. The list is used in a variety of ways…

Puppeteer is a JavaScript library which provides a high-
level API to control Chrome or Firefox over the …

 "devDependencies": { "mocha": "^11.1.0",

  "puppeteer": "^24.2.1", "rimraf": "^6.0.1”}

Figure 2: An example input & output from Abandabot-Predict

window (128k for most of our tested LLMs); we believe that this
downsampling also resembles the behavior of a human expert, who
can usually form a judgment by inspecting only a small subset of
related information (i.e., “thin-slicing” as called in the psychology
and philosophy literature [8]).
Theory-Based Prompting. The goal of this component is to con-
struct a prompt that can effectively instruct an LLM to generate
reasoning for impact judgments in a way similar to that of human
experts (i.e., adopting a reasoning process using the categories of in-
formation identified in RQ1). The prompt starts with a role-playing
directive telling the LLM to act as an expert software developer.
Then, it informs the LLM of the task (i.e., predicting the impact of
abandonment) and instructs the LLM to perform chain-of-thought
reasoning [96] for each of the four categories based on the contex-
tual information provided. Finally, it instructs the LLM to conduct
an additional step of chain-of-thought reasoning on whether the
abandonment would be impactful, before generating a final binary
recommendation (impactful or not impactful). All contextual infor-
mation is concatenated at the end of this prompt.

4.2 Implementation
We implement Abandabot-Predict in Python using on CodeQL [2]
and LangChain [4]; the former enables production-grade global
data-flow analysis and the latter simplifies prompting and plug-ins
for different LLMs. Currently, Abandabot-Predict only supports
JavaScript/TypeScript projects with package.json files, but we ex-
pect it to be trivial to extend the same analysis to other package
managers and CodeQL-supported programming languages with
the DataFlow module. The global data-flow analysis is implemented
by extending DataFlow::ConfigSig, where we set the source as im-
port/require statements and the sink as invoke nodes. Using this
extension, Abandabot-Predict executes a CodeQL query to find all
locations in the project’s source code where a dependency declared

in the package.json is imported and used. In the not uncommon
case where the query times out after an hour in a very large code
base, Abandabot-Predict regresses to conduct the same analysis
on local data flows instead. In the current implementation, we set
𝑁 = 50 and 𝑊 = 10 (i.e., inspecting a maximum of 50 dependency
usage locations, each including 10 surrounding lines), based on our
intuition of the amount of context required by a human expert to
judge on the impact of dependency abandonment.

4.3 Offline Evaluation
We collect ground-truth judgments from our need-finding inter-
views and compare Abandabot-Predict’s performance under dif-
ferent LLMs and with several alternative baseline approaches. The
former is used to identify which LLM we will use in Abandabot-
Predict for the independent evaluations, and the latter serves as an
ablation study to test the effectiveness of theory-based contextual
information and prompting.

Dataset. Recall interviewees discussed specific dependencies and
whether they believed their abandonment would be impactful (cf.
Sec. 3.1). We compiled a list of 82 project dependency pairs from
the interview transcripts, with 57 being judged impactful and 25
being judged unimpactful by participants, which served as our
ground-truth dataset.

Models.We choose the following LLMs for evaluation: GPT-4o [41],
DeepSeek-V3 [55], Llama-3.3-70B-Instruct [29], and Gemini-2.0-
Flash [37].We choose them because they are state-of-the-art general
purpose LLMs with large context windows (≥128k).
Baseline Approaches.Apart from the Abandabot-Predict approach
we introduced in Section 4.1, we introduce the following three
alternative baseline approaches for comparison:

(1) Abandabot-Predict-Baseline: This baseline uses a basic prompt
with role-playing directives and chain-of-thought reasoning to
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Figure 3: The Macro-F1 performance results (average and std.
dev. over ten runs) for different LLMs and baselines.

make abandonment impact predictions; no theory-driven rea-
soning instructions or context-specific information is provided.

(2) Abandabot-Predict-Theory-Only: Extending the baseline above,
it further provides theory-based reasoning instructions but does
not provide any context-specific information.

(3) Abandabot-Predict-Context-Only: Extending the baseline above,
it further provides context-specific information, but does not
provide any theory-driven reasoning instructions.

Evaluation Metric. We use Marco-F1 [38] as the main evaluation
metric because in an imbalanced dataset, it gives equal importance
to minority classes. Single-label precision, recall, and F1 scores
would be misleading in our case. For example, a classifier that
always predicts “impactful” for every dependency would achieve a
deceptively high precision of 69.5%, recall of 100%, and F1 of 82.0%,
if we compute these metrics based on the “impactful” label. For each
LLM and approach configuration, we run Abandabot-Predict on
each project dependency pair in the ground truth dataset ten times
and compute the average and standard deviations of the Macro-F1s,
to address the occasional uncertainty in its predictions.

Results. All models achieve the best overall performance when
provided with theory-driven reasoning instructions and context-
specific information (cf. Fig. 3). GPT-4o and DeepSeek-V3 outper-
form the others (0.746 Macro-F1). We chose to use DeepSeek-V3
for our independent evaluation study because it has comparable
performance and is cheaper than GPT-4o. All models achieve bet-
ter performance compared to the baseline if supplemented with
contextual information; the same does not necessarily apply to
theory-based prompting, which may have caused the LLM to hallu-
cinate more without any contextual information (e.g.. in the case
of DeepSeek-V3 and GPT-4o). In all LLMs, Abandabot-Predict out-
performs random guessing, which always has a 0.5 Macro-F1.

4.4 Independent Evaluation Study
To evaluate the performance of Abandabot-Predict’s judgments
(RQ3), we conduct an independent evaluation study in the form of
an online survey. In addition, we also assess the perceived useful-
ness of the context-specific information derived from our theoreti-
cal understanding in assisting developers when making judgments
about dependency abandonment, to validate the utility of the cate-
gories of information identified in the RQ1 findings.

Experimental Design. Designing an evaluation to assess whether
Abandabot-Predict judgments align with human judgments is dif-
ficult from an empirical design perspective. We know from RQ1
that participants struggled to make judgments when they lacked
appropriate context information without reasoning through it, and
they may also reflect on relevant criteria only as they think more
carefully, which we cannot easily have people do. This also poses
the question of how reliable user’s first-impression judgments are
without context. Because of this, we wanted to evaluate user judg-
ments about the same dependencies when provided context, but
we had to balance two key biases.
• If we show participants our predicted judgment and ask them
if they agree point-blank, there could be obvious issues with
acquiesce bias [25], as participants may be inclined to agree with
the judgment provided.

• If we counteracted this by first asking them to make a judgment
without and with context transparently, this design could suffer
from obvious consistency bias [17], as participants may double
down on their first judgment subconsciously.

In an attempt to balance these biases, we designed the following
evaluation methodology consisting of three steps in a single survey.
In step 1 we asked participants to judge the impactfulness of aban-
donment without context. In step 2 on the next page of the survey,
we frame their task as providing constructive feedback on auto-
matically generated judgments from an unnamed prototype tool so
that they feel more comfortable disagreeing (attempting to address
acquiesce bias). Here, we introduce the four categories of context-
specific information, provide Abandabot-Predict ’s contextual rea-
soning for each category, and the final predicted judgment for the
same three dependencies. We ask them to rate their agreement with
the final judgment and the reasoning for each category–note that
we intentionally ask a different question than in step 1 framed as
constructive feedback with the Abandabot-Predict judgment in an
attempt to minimize the effect of commitment-consistency bias.
Finally, in the third part, after all the judgments have been made,
we ask them to rate how useful each of the four categories of infor-
mation was in supporting their decision-making.

Using this design, we can evaluate how well we can predict their
intuitive judgment, their judgment with context, and the perceived
usefulness of contextual information while attempting to minimize
the relevant conflicting biases. While we cannot avoid either bias
entirely (and we are not aware of any other research design that
could short of deploying a tool for multiple years until novelty
effects wear off) we consider the performance in step 1 to be a lower
bound on Abandabot-Predict ’s performance since participants are
provided no relevant context, and the performance in step 2 as an
upper bound because not only are participants provided with all the
contextual information our theoretical understanding outlines they
likely require, but the responses may also suffer from acquiesce
bias as already discussed. We believe that the true performance of
Abandabot-Predict lies somewhere between these two bounds.

Survey Design. The survey consists of three steps. In step 1, we
ask participants to provide a binary judgment about whether they
believe each dependency’s abandonment would likely be impactful
to their project, without providing our judgment or any additional
context. In step 2, we provide the Abandabot-Predict contextual
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reasoning for each of the four categories and its final judgment for
the same three dependencies and ask them to rate their agreement
with the final judgment and the reasoning for each category, which
we intentionally frame as providing constructive feedback on a
prototype tool. In step 3, we ask them to rate how useful they
believe each of the four categories is in informing judgments about
the potential impactfulness of dependency abandonment on a 5-
point rating scale. We provide the complete survey template in the
supplemental materials (cf. Sec. 7).

Identifying Participants and Project Dependencies. We aimed
to recruit participants who meet the same criteria used in the initial
need-finding interviews (cf. Sec. 3.1), i.e., maintainers of active
JavaScript projects who have faced or currently face dependency
abandonment. We used the same pool of participants identified
using our second sampling strategy, excluding any projects we had
already invited to participate in the need-finding study.

Stratified Sampling of Dependencies. For each participant and
corresponding project, we ran Abandabot-Predict on all dependen-
cies declared in their package.json file, generating an evaluation
and binary impact prediction for each. We then select the three de-
pendencies that we include in the survey using a stratified sampling
method using three dependency sampling strata. We only ask each
participant about three dependencies to encourage participation in
and completion of the survey, considering it better to have fewer
judgments frommore participants than more judgments from fewer
participants and also to expand the pool of experiences and perspec-
tives included in our evaluation. We randomly select one depen-
dency each from the pools of predicted impactful and not impactful
dependencies. To ensure that we evaluate Abandabot-Predict’s per-
formance in potentially more difficult context-dependent cases, we
randomly select one dependency from the pool of dependencies
where the judgment was content dependent, i.e., from the subset
of dependencies where Abandabot-Predict generated a different
judgment for the same dependency in a different project. We use
Qualtrics to generate personalized surveys for each participant and
email invitations to 1,673 randomly selected qualifying maintainers,
and in total we received 152 responses, i.e., a response rate of 9%.

Evaluating Survey Results. To answer RQ3, we analyzed the 124
responses that at least completed step 1,6 generating 690 importance
judgments about 372 dependencies in 124 distinct repositories. We
compared the classifier prediction with the participant judgments
from step 1 and step 2, reporting a Micro-F1 for both parts, which
serve as an upper and lower bound on classifier performance. We
calculated how frequently participants changed their opinion about
a dependency’s importance in step 2 of the survey and assessed
the frequency and directionality of changes in opinion. We infer
their judgment of importance in step 2 based on their agreement
rating with the predicted judgment. In addition, to assess the per-
ceived usefulness of each of the four categories of information
since the measures are ordinal, we evaluate and compare the rating
distributions.

87%
89%

92%

83%

13%
11%

8%

17%Importance of Functionality
Depth of Integration

Availability of Alternatives
External Environmental Pressures

Agree Disagree

Figure 4: Percentage of judgments where participants agreed
or disagreed with the reasoning provided for each category.
4.5 RQ3 Results
We found that the classifier is effective at predicting developer
judgments of abandonment impact, achieving an overall Macro-F1
score of 0.682 without context (step 1) and 0.840 with context (step
2). Suggesting that most of the time developers agree with the au-
tomatically generated judgments of impactfulness. We also found
that most of the time, when participants changed their judgment
of impactfulness after being provided with the four categories of
context-specific information, it was to agree with the classifier’s pre-
diction. We did not observe a significant difference in performance
between the dependency sampling strata.

Participants mostly agreed with the reasoning provided for each
of the four categories of context-specific information provided by
Abandabot-Predict. Participants fully agreed with the reasoning for
all four categories 75% of the time. We provide a breakdown of
user agreement with the reasoning provided for each category in
Fig. 4. Most of the participants considered context-specific informa-
tion useful in informing their judgments (cf. Fig. 5). The categories
of depth of integration and availability of alternatives we consid-
ered most useful, with 73% and 72% participants considering them
very useful or extremely useful when making judgments about
the impact of abandonment, respectively. External environmental
pressure was considered the least useful by far. We speculate that
this is because it is a relatively niche concept that may be difficult
to grasp without further elaboration or examples.

39%32%18%7%
33%40%17%8%
28%44%19%8%
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Not at all
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Moderately
useful

Very
useful

Extremely
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Figure 5: Rating distribution of perceived usefulness for each
category of context-specific information.

Key Insights: Participants generally agreed with
Abandabot-Predict ’s judgments and found the provided
context-specific information helpful, particularly valuing
insights on the depth of integration.

4.6 Limitations andThreats to Validity
The use of LLMs to support dependency management decisions
comes with its own risks. In addition to the general risk of halluci-
nation and misleading developers in its generated reasoning [56],
it is also possible that an LLM learns human bias, does not account
for the latest changes, and makes unfair decisions (e.g., it may learn
from a training data showing an unjustified strong favor/disfavor
691 responses fully completed the survey. The survey was intentionally designed so
participants could stop at any point, but completing step 1 was the minimum required
to be useful in our analysis.
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to a certain dependency). Also, while our prototype demonstrates
the overall feasibility of the approach, implementing a fully au-
tonomous bot would require more engineering considerations, e.g.,
managing the cost of continuous large-scale scanning.

Our offline evaluation is based on a small ground truth dataset,
making it hard to mitigate the threat of overfitting. We mitigate
this threat through the independent evaluation study on projects
outside of the dataset. In addition, human decisions are generally
imperfect, often relying on limited experience and faulty mental
models [43]—adding noise to the evaluation dataset and perfor-
mance results. Future research is needed to understand the nature
of human biases and errors in our problem—analogously to previous
research [45].

The survey results may be affected by self-selection bias, as is a
common risk in such studies. Due to our survey design, the results
may suffer from commit-consistency and acquiescence bias [25].

5 Discussion and Implications
5.1 Intelligent Tool Pre-Configuration
Within the context of attempting to reduce noise in automated
SE tooling by filtering out irrelevant notifications, our findings
illustrate the potential for intelligent pre-configuration of context-
aware tooling. Although existing analyses can provide general guid-
ance, effective defaults often require nuanced judgments based on
project-specific context, which are challenging to encode through
purely technical rules. For example, a CSS-injection vulnerability
in a dependency of a static website generator might be technically
reachable but practically irrelevant since the program does not pro-
cess external inputs, highlighting that technical reachability alone
is insufficient for accurate judgments in applications such as the
one explored in this paper. This need for customization has also
been repeatedly recognized for various static analysis tools [84].
Similarly, determining whether dependency abandonment would
impact a project requires understanding how the dependency is
integrated, what functionality it provides, and other contextual
factors we identified. These scenarios necessitate understanding
the project’s socio-technical context, which is not trivially captured
through static analysis or API compatibility analysis. In our case,
we do not see a plausible path to determine the importance of
dependency abandonment purely with technical code analysis.

Providing configuration options is a common strategy to make
these approaches more useful. Developers can turn off certain warn-
ings or customize settings. However, manual configurations or
purely technical heuristics often prove too tedious or inadequate,
respectively, failing to account for the complexity of developer
judgments required. Therefore, we advocate for intelligent pre-
configurations that integrate contextual knowledge and theory-
driven reasoning. We advocate for predicting sensible defaults as
we did in this study using theory-informed context and reasoning
capabilities in an attempt to mirror developer assessments and offer
contextually sensible defaults. This approach could be applied to
many SE contexts where developers must make judgments that de-
pend on project-specific context. From code smell warnings to pull
request prioritization to security vulnerability triage, developers
face many decisions where the “right” answer depends on their

specific project context and goals, and smart, theory-based tools
can mirror context-rich human judgment to a large degree.

Implications for researchers and tool builders: Our find-
ings suggest that future work could apply similar methodologies
to identify contextual factors that make tool notifications relevant
to developers for automated tooling across various software engi-
neering processes. Our experience suggests that tool builders may
want to consider incorporating automatic pre-configuration capa-
bilities that consider project-specific context to improve developer
experience. Tool designers could also leverage participatory design
to refine these defaults, ensuring that the tool’s “smart” behavior
matches user expectations. In practice, this could mean embed-
ding analytics that learn from project characteristics and developer
feedback to auto-tune alert thresholds [84].

5.2 Synergistic Design: Adding Theory to LLMs
Our findings highlight the promising synergy between theory
grounded in practitioner experience and the powerful reasoning
capabilities of LLMs. Although our ablation study demonstrates the
clear benefits of providing explicit theory and context information,
we also observed that some LLMs can already infer substantial con-
text from their existing knowledge base alone. For instance, even
without explicit inputs about dependency alternatives, LLMs often
spontaneously mentioned viable alternative packages, suggesting
an unexpectedly rich implicit understanding of the domain.

This synergistic relationship accelerated the development of
Abandabot-Predict considerably. Rather than needing to opera-
tionalize all context factors, collect extensive training data, and
build a conventional machine learning model, we instead focused
on developing a robust theoretical understanding through devel-
oper interviews, collecting appropriate theory-driven context, and
iteratively engineering effective prompts. The LLM served as an
interpretable reasoning engine that could follow our theory and in-
terpret contextual information. Thus, rather than viewing LLMs as
standalone solutions, we propose a combined approachwhere LLMs
amplify the practical utility of human-developed theory, signifi-
cantly lowering the barrier to developing sophisticated predictive
tools. In short, our findings advocate for a human-in-the-loop ap-
proach to designing LLM solutions: Theory and empirical evidence
should shape model prompts, constraints, and training.

This approach represents a particularly effective division of la-
bor: domain experts contribute their understanding of what makes
dependency abandonment impactful through qualitative research,
while LLMs provide the computational power to analyze project-
specific contexts through this theoretical lens. The theory guides
what contextual information to prioritize and how to interpret it,
while the LLM enables scaling this analysis across numerous depen-
dencies and projects without requiring exhaustive manual analysis
or complex custom code for each context factor.

Implications for researchers: Research could investigate how
to effectively combine domain theories with LLM capabilities across
different software engineering tasks. There is increasing excitement
in this space and a lot of research is beginning to use hybrid ap-
proaches (e.g., combining LLMs with static analysis or symbolic
reasoning), and we encourage the use of more theory in the design
of LLM-based tools for SE. For example, recent work has combined
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LLMs and static analysis techniques to improve state-of-the-art
performance in the detection of malicious npm packages [101].

6 Conclusion
In this paper, we develop a theoretical understanding of how a
project’s dependency usage context affects the impactfulness of
dependency abandonment, build an LLM-based classifier based on
our theoretical understanding, and assess its effectiveness and per-
ceived usefulness in supporting and making judgments about the
impact of abandonment. We found that there are four categories of
context-specific information that developers often cite when consid-
ering how the context of their dependency usage affects the impact
dependency abandonment. We also leaned that our classifier is
effective at predicting project-specific judgments of impactfulness
and that the context-specific information derived from our theoret-
ical understanding is perceived as useful by developers when they
are making judgments about the impact of abandonment.

7 Data Availability
Theappendix, interview guide, evaluation survey, and an anonymized
version of the Abandabot-Predict repository are available in the
supplemental materials on HotCRP. We will post the final supple-
mentary materials publicly on Zenodo with the camera ready.

Acknowledgments
We thank the reviewers for their consideration.

References
[1] [n. d.]. About OpenSSF. https://openssf.org/about/. Accessed Mar. 2025.
[2] [n. d.]. CodeQL. https://codeql.github.com/. Accessed Mar. 2025.
[3] [n. d.]. Dependabot. https://dependabot.com. Accessed: 2024-03-16.
[4] [n. d.]. LangChain. https://www.langchain.com/. Accessed Mar. 2025.
[5] [n. d.]. Snyk Bot. https://github.com/snyk-bot. Accessed Mar. 2025.
[6] [n. d.]. Socket. https://socket.dev. Accessed Mar. 2025.
[7] 2021. Executive Order 14028: Improving the Nation’s Cybersecu-

rity. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/
12/executive-order-on-improving-the-nations-cybersecurity/.

[8] Nalini Ambady and Robert Rosenthal. 1992. Thin slices of expressive behavior
as predictors of interpersonal consequences: A meta-analysis. Psychological
Bulletin 111, 2 (1992), 256.

[9] Guilherme Avelino et al. 2019. On the abandonment and survival of open source
projects: an empirical investigation. In Proc. Int’l Symp. Empirical Software
Engineering and Measurement (ESEM).

[10] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente.
2016. A novel approach for estimating truck factors. In Proc. Int’l Conf. Program
Comprehension (ICPC). IEEE, 1–10.

[11] Nathaniel Ayewah and William Pugh. 2008. A report on a survey and study
of static analysis users. In Proceedings of the 2008 workshop on Defects in large
software systems. 1–5.

[12] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Se-
bastiano Panichella. 2015. How the Apache community upgrades dependencies:
An evolutionary study. Empirical Software Engineering (2015).

[13] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[14] Marion Buchenau and Jane Fulton Suri. 2000. Experience prototyping. In Pro-
ceedings of the 3rd conference on Designing interactive systems: processes, practices,
methods, and techniques. 424–433.

[15] Fabio Calefato et al. 2022. Will you come back to contribute? Investigating the
inactivity of OSS core developers in GitHub. Empirical Software Engineering
(2022).

[16] Bodin Chinthanet et al. 2021. Lags in the release, adoption, and propagation of
npm vulnerability fixes. Empirical Software Engineering (2021).

[17] Robert B Cialdini et al. 2009. Influence: Science and practice. Vol. 4. Pearson
education Boston.

[18] CISA. 2023. Securing the software supply chain: reccomended practives for
managing open-source software and software bill of materials. Technical Report.

CISA. https://www.cisa.gov/sites/default/files/2023-12/ESF_SECURING_
THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%
20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%
20SOFTWARE%20BILL%20OF%20MATERIALS.pdf

[19] Victoria Clarke and Virginia Braun. 2017. Thematic analysis. The journal of
positive psychology 12, 3 (2017), 297–298.

[20] Jailton Coelho et al. 2020. Is this GitHub project maintained? Measuring the
level of maintenance activity of open-source projects. Information and Software
Technology (IST) (2020).

[21] Jailton Coelho andMarco Tulio Valente. 2017. Whymodern open source projects
fail. In Proc. Int’l Symposium Foundations of Software Engineering (FSE).

[22] Jailton Coelho, Marco Tulio Valente, Luciana L Silva, and Emad Shihab. 2018.
Identifying unmaintained projects in GitHub. In Proc. Int’l Symp. Empirical
Software Engineering and Measurement (ESEM).

[23] Lucian Constantin. 2018. Npm Attackers Sneak a Backdoor into Node.js De-
ployments through Dependencies. https://thenewstack.io/npm-attackers-sneak-
a-backdoor-into-node-js-deployments-through-dependencies/. Accessed: 2024-
02-28.

[24] John W Creswell and Cheryl N Poth. 2016. Qualitative inquiry and research
design: Choosing among five approaches. Sage publications.

[25] Lee J Cronbach. 1946. Response sets and test validity. Educational and psycho-
logical measurement 6, 4 (1946), 475–494.

[26] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the evolution
of technical lag in the npm package dependency network. In Proc. Int’l Conf.
Software Maintenance and Evolution (ICSME). IEEE.

[27] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proc. Conf.
Mining Software Repositories (MSR). 181–191.

[28] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.
Keep me updated: An empirical study of third-party library updatability on
Android. In Proc. Conf. Computer and Communications Security (CCS).

[29] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783 (2024).

[30] Nadia Eghbal. 2016. Roads and bridges: The unseen labor behind our digital
infrastructure. Ford Foundation.

[31] Nadia Eghbal. 2019. The rise of few-maintainer projects. https://increment.com/
open-source/the-rise-of-few-maintainer-projects/. Accessed: 2024-08-15.

[32] Nadia Eghbal. 2020. Working in public: the making and maintenance of open
source software. Stripe Press.

[33] Linda Erlenhov, Francisco Gomes de Oliveira Neto, and Philipp Leitner. 2022. De-
pendency management bots in open-source systems—prevalence and adoption.
PeerJ Computer Science 8 (2022), e849.

[34] Linda Erlenhov, Francisco Gomes De Oliveira Neto, and Philipp Leitner. 2020. An
empirical study of bots in software development: Characteristics and challenges
from a practitioner’s perspective. In Proceedings of the 28th ACM joint meeting
on european software engineering conference and symposium on the foundations
of software engineering. 445–455.

[35] Nicole Forsgren et al. 2021. 2020 State of the Octoverse: Securing the World’s
Software. arXiv preprint arXiv:2110.10246 (2021).

[36] Jill J Francis et al. 2010. What is an adequate sample size? Operationalising data
saturation for theory-based interview studies. Psychology and Health (2010).

[37] howpublished = https://deepmind.google/technologies/gemini/flash/ note = Ac-
cessed: March 2025 Google Inc, title=Gemini Flash. [n. d.].

[38] Margherita Grandini, Enrico Bagli, and Giorgio Visani. 2020. Metrics for multi-
class classification: An overview. arXiv preprint arXiv:2008.05756 (2020).

[39] Bruce Hanington and Bella Martin. 2019. Universal methods of design expanded
and revised: 125 Ways to research complex problems, develop innovative ideas, and
design effective solutions. Rockport publishers.

[40] Runzhi He, Hao He, Yuxia Zhang, and Minghui Zhou. 2023. Automating depen-
dency updates in practice: An exploratory study on GitHub Dependabot. IEEE
Transactions on Software Engineering (2023).

[41] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh,
Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. 2024.
GPT-4o System Card. arXiv preprint arXiv:2410.21276 (2024).

[42] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
2013 35th International Conference on Software Engineering (ICSE). IEEE, 672–681.

[43] Daniel Kahneman, Paul Slovic, and Amos Tversky. 1982. Judgment Under
Uncertainty: Heuristics and Biases. Cambridge University Press.

[44] Jymit Khondhu, Andrea Capiluppi, and Klaas-Jan Stol. 2013. Is it all lost? A
study of inactive open source projects. In IFIP Int’l Conf. on Open Source Systems.
Springer, 61–79.

[45] Jon Kleinberg, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil
Mullainathan. 2018. Human decisions and machine predictions. TheQuarterly
Journal of Economics 133, 1 (2018), 237–293.

[46] Amy J Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in col-
located software development teams. In Proc. Int’l Conf. Software Engineering

https://openssf.org/about/
https://codeql.github.com/
https://dependabot.com
https://www.langchain.com/
https://github.com/snyk-bot
https://socket.dev
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.cisa.gov/sites/default/files/2023-12/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.pdf
https://www.cisa.gov/sites/default/files/2023-12/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.pdf
https://www.cisa.gov/sites/default/files/2023-12/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.pdf
https://www.cisa.gov/sites/default/files/2023-12/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.pdf
https://thenewstack.io/npm-attackers-sneak-a-backdoor-into-node-js-deployments-through-dependencies/
https://thenewstack.io/npm-attackers-sneak-a-backdoor-into-node-js-deployments-through-dependencies/
https://increment.com/open-source/the-rise-of-few-maintainer-projects/
https://increment.com/open-source/the-rise-of-few-maintainer-projects/
https://deepmind.google/technologies/gemini/flash/


Conference’17, July 2017, Washington, DC, USA Anonymous et al.

(ICSE). IEEE, 344–353.
[47] Raula Gaikovina Kula et al. 2018. Do developers update their library dependen-

cies? Empirical Software Engineering 23, 1 (2018), 384–417.
[48] Stefano Lambiase, Gemma Catolino, Fabio Palomba, and Filomena Ferrucci.

2024. Motivations, Challenges, Best Practices, and Benefits for Bots and Con-
versational Agents in Software Engineering: A Multivocal Literature Review.
Comput. Surveys 57, 4 (2024), 1–37.

[49] Jasmine Latendresse, Suhaib Mujahid, Diego Elias Costa, and Emad Shihab. 2022.
Not all dependencies are equal: An empirical study on production dependen-
cies in npm. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. 1–12.

[50] Tobias Lauinger et al. 2018. Thou shalt not depend on me: Analysing the use of
outdated JavaScript libraries on the web. arXiv preprint arXiv:1811.00918 (2018).

[51] Lucas Layman, Laurie Williams, and Robert St Amant. 2007. Toward reducing
fault fix time: Understanding developer behavior for the design of automated
fault detection tools. In First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007). IEEE, 176–185.

[52] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, et al. 2020. Retrieval-augmented generation for knowledge-
intensive NLP tasks. Advances in Neural Information Processing Systems 33
(2020), 9459–9474.

[53] Sarah Lewis. 2015. Qualitative inquiry and research design: Choosing among
five approaches. Health promotion practice 16, 4 (2015), 473–475.

[54] Xiaozhou Li, Sergio Moreschini, Fabiano Pecorelli, and Davide Taibi. 2022.
OSSARA: abandonment risk assessment for embedded open source components.
IEEE Software 39, 4 (2022), 48–53.

[55] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 Technical Report. arXiv preprint arXiv:2412.19437 (2024).

[56] Fang Liu, Yang Liu, Lin Shi, HoukunHuang, RuifengWang, Zhen Yang, Li Zhang,
Zhongqi Li, and Yuchi Ma. 2024. Exploring and evaluating hallucinations in
llm-powered code generation. arXiv preprint arXiv:2404.00971 (2024).

[57] Yuxing Ma et al. 2021. World of Code: Enabling a research workflow for min-
ing and analyzing the universe of open source VCS data. Empirical Software
Engineering 26 (2021).

[58] Suvodeep Majumder, Joymallya Chakraborty, Amritanshu Agrawal, and Tim
Menzies. 2019. Why software projects need heroes (lessons learned from 1100+
projects). arXiv preprint arXiv:1904.09954 (2019).

[59] Pia Mancini et al. 2021. Sustain: A One Day Conversation for Open Source Software
Sustainers – The Report. Technical Report. Sustain Conference Organization.
https://sustainoss.org/assets/pdf/Sustain-In-2021-Event-Report.pdf

[60] Bernd Marcus and Astrid Schütz. 2005. Who are the people reluctant to partici-
pate in research? Personality correlates of four different types of nonresponse
as inferred from self-and observer ratings. Journal of personality (2005).

[61] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An empirical study of
API stability and adoption in the Android ecosystem. In 2013 IEEE International
Conference on Software Maintenance. IEEE, 70–79.

[62] Tom Mens and Alexandre Decan. 2024. An Overview and Catalogue of Depen-
dency Challenges in Open Source Software Package Registries. arXiv preprint
arXiv:2409.18884 (2024).

[63] Tom Mens, Mathieu Goeminne, Uzma Raja, and Alexander Serebrenik. 2014.
Survivability of software projects in gnome–a replication study. In 7th Inter-
national seminar series on advanced techniques & tools for software evolution
(SATToSE). 79–82.

[64] Courtney Miller, Mahmoud Jahanshahi, Audris Mockus, Bogdan Vasilescu, and
Christian Kästner. 2025. Understanding the response to open-source dependency
abandonment in the npm ecosystem. In Proc. Int’l Conf. Software Engineering
(ICSE).

[65] Courtney Miller, Christian Kästner, and Bogdan Vasilescu. 2023. “We Feel
Like We’re Winging It:” A Study on Navigating Open-Source Dependency
Abandonment. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE). 1281–1293.

[66] Courtney Miller, David Gray Widder, Christian Kästner, and Bogdan Vasilescu.
2019. Why do people give up FLOSSing? A study of contributor disengagement
in open source. In IFIP International Conference on Open Source Systems.

[67] Samim Mirhosseini and Chris Parnin. 2017. Can automated pull requests en-
courage software developers to upgrade out-of-date dependencies?. In Proc. Int’l
Conf. Automated Software Engineering (ASE). IEEE.

[68] Martin Monperrus. 2019. Explainable software bot contributions: Case study
of automated bug fixes. In 2019 IEEE/ACM 1st international workshop on bots in
software engineering (BotSE). IEEE, 12–15.

[69] Suhaib Mujahid et al. 2023. Where to Go Now? Finding Alternatives for De-
clining Packages in the npm Ecosystem. In Proc. Int’l Conf. Automated Software
Engineering (ASE).

[70] Suhaib Mujahid, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, Mo-
hamed Aymen Saied, and Bram Adams. 2021. Toward using package centrality
trend to identify packages in decline. IEEE Transactions on Engineering Mgmt.

(2021).
[71] Michael J Muller and Sarah Kuhn. 1993. Participatory design. Commun. ACM

36, 6 (1993), 24–28.
[72] Brad A Myers, Amy J Ko, Thomas D LaToza, and YoungSeok Yoon. 2016. Pro-

grammers are users too: Human-centered methods for improving programming
tools. Computer 49, 7 (2016), 44–52.

[73] Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of
Program Analysis. Springer.

[74] npm. 2016. kik, left-pad, and npm. https://blog.npmjs.org/post/141577284765/
kik-left-pad-and-npm. Accessed: 2022-10-04.

[75] npm Inc. 2018. This year in JavaScript: 2018 in review and npm’s predictions
for 2019. https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-
and-npms-predictions-for-2019-3a3d7e5298ef. Accessed: 2022-08-19.

[76] OpenSSF. [n. d.]. FLOSS Best Practices Criteria (All Levels). https://www.
bestpractices.dev/en/criteria Accessed: 2024-03-17.

[77] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. 2018. Vulnerable open source dependencies: Counting those that
matter. In Proceedings of the 12th ACM/IEEE international symposium on empirical
software engineering and measurement. 1–10.

[78] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. 2020. Vuln4real: A methodology for counting actually vulnerable
dependencies. IEEE Transactions on Software Engineering 48, 5 (2020), 1592–1609.

[79] Donald Pinckney, Federico Cassano, Arjun Guha, and Jonathan Bell. 2023. A
Large Scale Analysis of Semantic Versioning in NPM. Proc. Conf. Mining Software
Repositories (MSR) (2023).

[80] Gede Artha Azriadi Prana et al. 2021. Out of sight, out of mind? How vulnerable
dependencies affect open-source projects. Empirical Software Engineering 26
(2021).

[81] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do devel-
opers react to API deprecation? The case of a Smalltalk ecosystem. In Proc. Int’l
Symposium Foundations of Software Engineering (FSE).

[82] Steven G Rogelberg et al. 2003. Profiling active and passive nonrespondents to
an organizational survey. Jrnl. of Applied Psych. (2003).

[83] Benjamin Rombaut, Filipe R Cogo, Bram Adams, and Ahmed E Hassan. 2023.
There’s no such thing as a free lunch: Lessons learned from exploring the
overhead introduced by the Greenkeeper dependency bot in npm. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 32, 1 (2023).

[84] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Soderberg, and Collin
Winter. 2015. Tricorder: Building a program analysis ecosystem. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 598–608.

[85] shelly. 2022. https://twitter.com/codebytere/status/1567437988908392455. Ac-
cessed: 2024-03-17.

[86] Sonatype. [n. d.]. Automate your dependnecy management. https://www.
sonatype.com/sonatype-developer. Accessed Mar. 2025.

[87] Sonatype. 2023. 9th Annual State of the Software Supply Chain. Technical
Report. Sonatype. https://www.sonatype.com/state-of-the-software-supply-
chain/about-the-report

[88] Sonatype. 2024. 10th Annual State of the Software Supply Chain. Technical
Report. Sonatype. https://www.sonatype.com/state-of-the-software-supply-
chain/Introduction

[89] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting developer produc-
tivity one bot at a time. In Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering. 928–931.

[90] Jacob Stringer, Amjed Tahir, Kelly Blincoe, and Jens Dietrich. 2020. Technical
lag of dependencies in major package managers. In Proc. Asia-Pacific Software
Engineering Conf. (APSEC). IEEE, 228–237.

[91] Synopsys. 2024. 2024 Open Source Security and Risk Analysis Report. Technical
Report. Synopsys. https://www.synopsys.com/software-integrity/engage/ossra/
ossra-report

[92] Gareth Terry, Nikki Hayfield, Victoria Clarke, Virginia Braun, et al. 2017. The-
matic analysis. The SAGE handbook of qualitative research in psychology 2, 17-37
(2017), 25.

[93] Tidelift. 2024. The 2024 Tidelift State of the Open Source Maintainer Report.
Technical Report. Tidelift. https://tidelift.com/open-source-maintainer-survey-
2024

[94] Alexandros Tsakpinis. 2023. Analyzing Maintenance Activities of Software
Libraries. In Proceedings of the 27th International Conference on Evaluation and
Assessment in Software Engineering. 313–318.

[95] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: A case study of
the PyPI ecosystem. In Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE).

[96] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural Information Processing
Systems 35 (2022), 24824–24837.

https://sustainoss.org/assets/pdf/Sustain-In-2021-Event-Report.pdf
https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://www.bestpractices.dev/en/criteria
https://www.bestpractices.dev/en/criteria
https://twitter.com/codebytere/status/1567437988908392455
https://www.sonatype.com/sonatype-developer
https://www.sonatype.com/sonatype-developer
https://www.sonatype.com/state-of-the-software-supply-chain/about-the-report
https://www.sonatype.com/state-of-the-software-supply-chain/about-the-report
https://www.sonatype.com/state-of-the-software-supply-chain/Introduction
https://www.sonatype.com/state-of-the-software-supply-chain/Introduction
https://www.synopsys.com/software-integrity/engage/ossra/ossra-report
https://www.synopsys.com/software-integrity/engage/ossra/ossra-report
https://tidelift.com/open-source-maintainer-survey-2024
https://tidelift.com/open-source-maintainer-survey-2024


Designing Abandabot: When Does Open Source Dependency Abandonment Matter? Conference’17, July 2017, Washington, DC, USA

[97] Mairieli Wessel, Igor Wiese, Igor Steinmacher, and Marco Aurelio Gerosa. 2021.
Don’t disturb me: Challenges of interacting with software bots on open source
software projects. Proceedings of the ACM on Human-Computer Interaction 5,
CSCW2 (2021), 1–21.

[98] Martin Woodward. 2022. Octoverse 2022: 10 years of tracking open
source. https://github.blog/news-insights/research/octoverse-2022-10-years-of-
tracking-open-source/. Accessed: 2025-03-02.

[99] Xiaoya Xia, Shengyu Zhao, Xinran Zhang, Zehua Lou, Wei Wang, and Fenglin
Bi. 2023. Understanding the archived projects on GitHub. In Proc. Int’l Conf.
Software Analysis, Evolution, and Reengineering (SANER). IEEE, 13–24.

[100] Nusrat Zahan et al. 2022. What are weak links in the NPM supply chain?. In Proc.
Int’l Conf. Software Engineering: Software Engineering in Practice (ICSE-SEIP).

[101] Nusrat Zahan, Philipp Burckhardt, Mikola Lysenko, Feross Aboukhadijeh, and
Laurie Williams. 2024. Leveraging Large Language Models to Detect npm
Malicious Packages. arXiv preprint arXiv:2403.12196 (2024).

[102] Ahmed Zerouali et al. 2018. An empirical analysis of technical lag in npm
package dependencies. In Proc. Int’l Conf. Software Reuse (ICSR). Springer.

[103] Zhiqing Zhong, Shilin He, HaoxuanWang, Boxi Yu, Haowen Yang, and Pinjia He.
2025. An Empirical Study on Package-Level Deprecation in Python Ecosystem.
In Proc. Int’l Conf. Software Engineering (ICSE).

[104] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael
Pradel. 2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995–1010.

https://github.blog/news-insights/research/octoverse-2022-10-years-of-tracking-open-source/
https://github.blog/news-insights/research/octoverse-2022-10-years-of-tracking-open-source/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Open Source Sustainability & Abandonment
	2.2 Dependency Management Tooling

	3 Need-Finding Interviews
	3.1 Research Design
	3.2 RQ1 Results - What Influences the Importance of Abandonment
	3.3 RQ2 Results - Tool Design Requirements and Information Needs

	4 Abandabot-Predict: Predicting Impactful Dependency Abandonment
	4.1 Approach
	4.2 Implementation
	4.3 Offline Evaluation
	4.4 Independent Evaluation Study
	4.5 RQ3 Results
	4.6 Limitations and Threats to Validity

	5 Discussion and Implications
	5.1 Intelligent Tool Pre-Configuration
	5.2 Synergistic Design: Adding Theory to LLMs

	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

