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ABSTRACT

Past research suggests software should be continuously maintained
in order to remain useful in our digital society. To determinewhether
these studies on software evolution are supported in modern-day
software libraries, we conduct a natural experiment on 26,050
GitHub repositories, statistically modeling library usage based on
their package-level downloads against di!erent factors related to
project maintenance.
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1 INTRODUCTION

Open-source software (OSS) provides widely reusable infrastructure
that our digital society relies on [9], but most of these systems rely
on the execution of "mundane but necessary" tasks [16], generally
de"ned as software maintenance [2, 3]. Much open-source mainte-
nance is done by volunteers, and the process can be daunting, repet-
itively time-consuming, and insu#ciently funded to take on [7, 25].
Research on open-source sustainability [5, 18, 24] addresses these
factors, and we begin to see more projects are left unmaintained
and abandoned by users and maintainers over time [7].

To preserve our modern software ecosystems, we aim to see
how open-source users react to projects that are less maintained
over time. Lehman’s laws of software evolution suggests the idea of
Continuing Change [12], arguing that a software will progressively
become less satisfying to its users over time unless it is continually
adapted to meet new needs [13, 19, 27]. This was supported in
industrial agile products [15, 26] and open source Java programs [1]
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through empirical analysis of program evolution. In other studies,
users admitted switching to di!erent libraries after maintainers
stopped updating project dependencies as well [17, 28].

While project maintenance seems intuitively vital, some depen-
dencies exist that do not require continuous maintenance because
the software is "feature-complete" [20].

To understand the dynamics between open-source maintenance
and project usage, we ask: Is there a relationship between a
project’s maintenance characteristics and the downstream
usage of that project?We perform a large-scale quantitative anal-
ysis of 26,050 popular GitHub repositories to identify the degree
maintainer disengagement associates with low project usage. We
obtain data on package-level downloads from the npm registry as
a way to measure project usage. In addition to project download
data we assembled a longitudinal data set of their activity met-
rics, developed an automated heuristic to detect decreased usage
in open-source projects, and estimated Cox proportional hazards
survival regressions to model what factors of maintenance a!ect
packages’ chances of losing users.

2 RESEARCH METHODS

To answer our research question, we use Cox proportional hazards
survival analysis [10] to model the dependent outcome of whether
project usage declines based on independent variables related to
maintenance and other project characteristics. Cox proportional
hazards is an extension of original survival analysis methods such
as Kaplan-Meier survival curves [21] and log-rank tests [4]. While
Kaplan-Meier models the survival probability past a certain time,
and log-rank tests assess statistical signi"cance without capturing
e!ect size [23], Cox proportional hazards models a hazard function
to assess the e!ects of multiple quantitative risk factors on the
survival time before an event of interest [11]. In our case the event
is the date when the package began to signi"cantly lose downloads,
with risks of low maintenance under consideration. To encode our
outcome of project usage we built a human-validated automated
heuristic to detect projects that experienced a peak in longitudinal
download counts followed by a signi"cant decline, which we refer
to as peaked projects.

Data set.We restricted our analysis to packages that were popu-
lar at least once in their history (i.e. packages that received at least
10,000 downloads and received at least 1 commit or opened/closed
issue during any month in our 2015-01 to 2020-12 observation win-
dow). From that collection of 37,984 packages we identi"ed 13,378
(35.22%) that peaked. To establish a control group of projects with
similar popularity we used the matching-pairs technique [6] to
identify a matching package that did not peak for each of the 13,378
projects. Each peaked project is paired with a non-peaked project
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Figure 1: Distribution of package downloads and commits for peaked projects during every month relative to peak.

that contained between 0.75- to 1.25-times the number of down-
loads during the month of the peaked project’smaximum downloads.
Then, because we want to study how various maintenance factors
contribute to explaining the variability in package usage over time,
we excluded packages that peaked within the "rst early 6 months
of the observation window and their matched-set pairs from our
sample. Thus, our "nal sample contains 26,050 total projects (13,025
peaked and 13,025 non-peaked) to be used in our Cox model.

Operationalization of Peaked Usage for Model. Before cre-
ating and encoding our heuristic, we established a common-ground
understanding of what represented peaked usage in downloads.
Across 3 rounds 4-5 researchers were prompted to individually
evaluate whether or not each package’s download trends in a ran-
dom sample of 100 projects showed a generally declining trend in
downloads following a higher point in the past (i.e. peaked). To
measure their degree of agreement, we then conducted inter-rater
reliability tests using the Fleiss’ kappa [14], con"rming a strong
level of agreement [8] with an average Fleiss score of 0.855.

We then designed a heuristic to automatically encapsulate the
generalized patterns observed by humans. The heuristic checks for
a 20% decrease from the maximum number of downloads to the
number of downloads during the last month in our observation
window to classify projects as peaked.

Collecting Independent Factors. As independent variables we
operationalized maintenance as the number of commits, number
of opened issues, number of closed issues, number of contributors,
and if the repository was archived as read-only. These activity met-
rics gauge the package’s overall maintainer and user engagement.
We additionally added the package size in kilobytes as a variable
to explore any relationship between small packages and widely-
used feature-complete software. Details on how these metrics were
obtained is in http://github.com/Enemily/Open-Source-Downloads.

3 RESULTS

The risk of packages severely losing downloads (i.e. peaking) de-
creases when they aremore consistentlymaintained. Figure 1 shows
relatively stable maintenance in commits leading up to the peak,
followed by downloads peaking at the same time commits begin
to drastically decrease. From the regression coe#cients of our Cox
model, the number of commits by contributors had a coe#cient of

of -0.04, giving a hazard ratio [22] of e−0.04 = 0.96 and implying for
every 1-unit increase in the number of contributor commits, the
risk of downloading peaking decreases by 4%. Maintainer engage-
ment through closing issues also decreases the risk of peaking by
6%, and archived repositories that become read-only increase the
risks of peaking by 37%. Additionally, the e!ects of no maintenance,
particularly read-only archived projects, on package downloads
decreases for smaller projects whose size in kilobytes during the
peak date (or last month of observation window for non-peaked
projects) is less than the median size of all packages in our sample
during their respective peak date (or last month for non-peaked).

Discussion. To some extent, the results from our longitudinal anal-
yses support Lehman’s lemma that projects progressively become
less satisfactory unless continually adapted. While most mainte-
nance factors agreed with Lehman, the relationship between soft-
ware maintenance and usage levels was not entirely supported for
smaller packages, as expected of small and widely-reused projects
to be feature-complete and less dependent on maintainers to thrive.

The relevance of a project may in$uence maintenance levels, as
developers prefer investing maintenance into popular projects that
attract more clients. Hence, a project’s declining popularity could
cause a decline in maintenance activity and should be considered
in addition to our results. Additionally, some studies de"ne dor-
mant repositories as those with less than 1 average commit every 4
consecutive quarters. Di!erent operationalizations between other
studies and ours could suggest bias and serve a threat to our results.

4 CONTRIBUTIONS

From our natural experiment on 26,050 packages, we can support
conjectures of open-source-sustainability research that mainte-
nance is important, but there is also nuance in that not all projects
need to be consistently maintained and a lack of maintenance is
not automatically a problem. We hope our empirical "ndings help
practitioners and researchers better understand the components
that drive open-source usability and sustainability as a whole.
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