
Do All So!ware Projects Die When Not Maintained? Analyzing
Developer Maintenance to Predict OSS Usage

Emily Nguyen
emilyngn@ucla.edu

University of California at Los Angeles
USA

ABSTRACT

Past research suggests software should be continuously maintained
in order to remain useful in our digital society. To determinewhether
these studies on software evolution are supported in modern-day
software libraries, we conduct a natural experiment on 26,050
GitHub repositories, statistically modeling library usage based on
their package-level downloads against di!erent factors related to
project maintenance.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-
itories.

KEYWORDS

Open Source, Open Source Sustainability, Survival Analysis

ACM Reference Format:
Emily Nguyen. 2023. Do All Software Projects Die When Not Maintained?
Analyzing Developer Maintenance to Predict OSS Usage. In Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’23), December 3–9,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3611643.3617849

1 INTRODUCTION

Open-source software (OSS) provides widely reusable infrastructure
that our digital society relies on [9], but most of these systems rely
on the execution of "mundane but necessary" tasks [16], generally
de"ned as software maintenance [2, 3]. Much open-source mainte-
nance is done by volunteers, and the process can be daunting, repet-
itively time-consuming, and insu#ciently funded to take on [7, 25].
Research on open-source sustainability [5, 18, 24] addresses these
factors, and we begin to see more projects are left unmaintained
and abandoned by users and maintainers over time [7].

To preserve our modern software ecosystems, we aim to see
how open-source users react to projects that are less maintained
over time. Lehman’s laws of software evolution suggests the idea of
Continuing Change [12], arguing that a software will progressively
become less satisfying to its users over time unless it is continually
adapted to meet new needs [13, 19, 27]. This was supported in
industrial agile products [15, 26] and open source Java programs [1]

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3617849

through empirical analysis of program evolution. In other studies,
users admitted switching to di!erent libraries after maintainers
stopped updating project dependencies as well [17, 28].

While project maintenance seems intuitively vital, some depen-
dencies exist that do not require continuous maintenance because
the software is "feature-complete" [20].

To understand the dynamics between open-source maintenance
and project usage, we ask: Is there a relationship between a
project’s maintenance characteristics and the downstream
usage of that project?We perform a large-scale quantitative anal-
ysis of 26,050 popular GitHub repositories to identify the degree
maintainer disengagement associates with low project usage. We
obtain data on package-level downloads from the npm registry as
a way to measure project usage. In addition to project download
data we assembled a longitudinal data set of their activity met-
rics, developed an automated heuristic to detect decreased usage
in open-source projects, and estimated Cox proportional hazards
survival regressions to model what factors of maintenance a!ect
packages’ chances of losing users.

2 RESEARCH METHODS

To answer our research question, we use Cox proportional hazards
survival analysis [10] to model the dependent outcome of whether
project usage declines based on independent variables related to
maintenance and other project characteristics. Cox proportional
hazards is an extension of original survival analysis methods such
as Kaplan-Meier survival curves [21] and log-rank tests [4]. While
Kaplan-Meier models the survival probability past a certain time,
and log-rank tests assess statistical signi"cance without capturing
e!ect size [23], Cox proportional hazards models a hazard function
to assess the e!ects of multiple quantitative risk factors on the
survival time before an event of interest [11]. In our case the event
is the date when the package began to signi"cantly lose downloads,
with risks of low maintenance under consideration. To encode our
outcome of project usage we built a human-validated automated
heuristic to detect projects that experienced a peak in longitudinal
download counts followed by a signi"cant decline, which we refer
to as peaked projects.

Data set.We restricted our analysis to packages that were popu-
lar at least once in their history (i.e. packages that received at least
10,000 downloads and received at least 1 commit or opened/closed
issue during any month in our 2015-01 to 2020-12 observation win-
dow). From that collection of 37,984 packages we identi"ed 13,378
(35.22%) that peaked. To establish a control group of projects with
similar popularity we used the matching-pairs technique [6] to
identify a matching package that did not peak for each of the 13,378
projects. Each peaked project is paired with a non-peaked project

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

2195

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7135-0425
https://doi.org/10.1145/3611643.3617849
https://doi.org/10.1145/3611643.3617849
https://doi.org/10.1145/3611643.3617849
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3617849&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Emily Nguyen

Figure 1: Distribution of package downloads and commits for peaked projects during every month relative to peak.

that contained between 0.75- to 1.25-times the number of down-
loads during the month of the peaked project’smaximum downloads.
Then, because we want to study how various maintenance factors
contribute to explaining the variability in package usage over time,
we excluded packages that peaked within the "rst early 6 months
of the observation window and their matched-set pairs from our
sample. Thus, our "nal sample contains 26,050 total projects (13,025
peaked and 13,025 non-peaked) to be used in our Cox model.

Operationalization of Peaked Usage for Model. Before cre-
ating and encoding our heuristic, we established a common-ground
understanding of what represented peaked usage in downloads.
Across 3 rounds 4-5 researchers were prompted to individually
evaluate whether or not each package’s download trends in a ran-
dom sample of 100 projects showed a generally declining trend in
downloads following a higher point in the past (i.e. peaked). To
measure their degree of agreement, we then conducted inter-rater
reliability tests using the Fleiss’ kappa [14], con"rming a strong
level of agreement [8] with an average Fleiss score of 0.855.

We then designed a heuristic to automatically encapsulate the
generalized patterns observed by humans. The heuristic checks for
a 20% decrease from the maximum number of downloads to the
number of downloads during the last month in our observation
window to classify projects as peaked.

Collecting Independent Factors. As independent variables we
operationalized maintenance as the number of commits, number
of opened issues, number of closed issues, number of contributors,
and if the repository was archived as read-only. These activity met-
rics gauge the package’s overall maintainer and user engagement.
We additionally added the package size in kilobytes as a variable
to explore any relationship between small packages and widely-
used feature-complete software. Details on how these metrics were
obtained is in http://github.com/Enemily/Open-Source-Downloads.

3 RESULTS

The risk of packages severely losing downloads (i.e. peaking) de-
creases when they aremore consistentlymaintained. Figure 1 shows
relatively stable maintenance in commits leading up to the peak,
followed by downloads peaking at the same time commits begin
to drastically decrease. From the regression coe#cients of our Cox
model, the number of commits by contributors had a coe#cient of

of -0.04, giving a hazard ratio [22] of e−0.04 = 0.96 and implying for
every 1-unit increase in the number of contributor commits, the
risk of downloading peaking decreases by 4%. Maintainer engage-
ment through closing issues also decreases the risk of peaking by
6%, and archived repositories that become read-only increase the
risks of peaking by 37%. Additionally, the e!ects of no maintenance,
particularly read-only archived projects, on package downloads
decreases for smaller projects whose size in kilobytes during the
peak date (or last month of observation window for non-peaked
projects) is less than the median size of all packages in our sample
during their respective peak date (or last month for non-peaked).

Discussion. To some extent, the results from our longitudinal anal-
yses support Lehman’s lemma that projects progressively become
less satisfactory unless continually adapted. While most mainte-
nance factors agreed with Lehman, the relationship between soft-
ware maintenance and usage levels was not entirely supported for
smaller packages, as expected of small and widely-reused projects
to be feature-complete and less dependent on maintainers to thrive.

The relevance of a project may in$uence maintenance levels, as
developers prefer investing maintenance into popular projects that
attract more clients. Hence, a project’s declining popularity could
cause a decline in maintenance activity and should be considered
in addition to our results. Additionally, some studies de"ne dor-
mant repositories as those with less than 1 average commit every 4
consecutive quarters. Di!erent operationalizations between other
studies and ours could suggest bias and serve a threat to our results.

4 CONTRIBUTIONS

From our natural experiment on 26,050 packages, we can support
conjectures of open-source-sustainability research that mainte-
nance is important, but there is also nuance in that not all projects
need to be consistently maintained and a lack of maintenance is
not automatically a problem. We hope our empirical "ndings help
practitioners and researchers better understand the components
that drive open-source usability and sustainability as a whole.

ACKNOWLEDGMENTS

This work was supported through Carnegie Mellon University’s
REU in Software Engineering (NSF Award 1901311).

2196

Do All So!ware Projects Die When Not Maintained? Analyzing Developer Maintenance to Predict OSS Usage ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] Mamdouh Alenezi and Khaled Almustafa. 2015. Empirical analysis of the com-

plexity evolution in open-source software systems. International Journal of
Hybrid Information Technology 8, 2 (2015), 257–266. https://doi.org/10.14257/
ijhit.2015.8.2.24

[2] Lowell Jay Arthur. 1988. Software evolution: the software maintenance challenge.
Wiley-Interscience.

[3] Keith H Bennett and Václav T Rajlich. 2000. Software maintenance and evolution:
a roadmap. In Proceedings of the Conference on the Future of Software Engineering.
73–87. https://doi.org/10.1145/336512.336534

[4] J Martin Bland and Douglas G Altman. 2004. The logrank test. Bmj 328, 7447
(2004), 1073. https://doi.org/10.1136/bmj.328.7447.1073

[5] InduShobha Chengalur-Smith, Anna Sidorova, and Sherae L Daniel. 2010. Sus-
tainability of free/libre open source projects: A longitudinal study. Journal of
the Association for Information Systems 11, 11 (2010), 5. https://doi.org/10.17705/
1jais.00244

[6] Peter Christen and Peter Christen. 2012. The data matching process. Springer.
https://doi.org/10.1007/978-3-642-31164-2_2

[7] Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects
fail. In Proceedings of the 2017 11th Joint meeting on foundations of software
engineering. 186–196. https://doi.org/10.1145/3106237.3106246

[8] Kevin Crowston and James Howison. 2016. FLOSS Project E!ectiveness
Measures1. Successful OSS project design and implementation: requirements,
tools, social designs and reward structures (2016), 149. https://doi.org/10.1108/
14684521211240207

[9] Nadia Eghbal. 2016. Roads and bridges. The Unseen labor behind our digital
infrastructure (2016). https://doi.org/10.48558/9qrg-bh51

[10] John Fox and Sanford Weisberg. 2002. Cox proportional-hazards regression for
survival data. An R and S-PLUS companion to applied regression 2002 (2002).

[11] Brandon George, Samantha Seals, and Inmaculada Aban. 2014. Survival analysis
and regression models. Journal of nuclear cardiology 21 (2014), 686–694. https:
//doi.org/10.1007/s12350-014-9908-2

[12] Michael W Godfrey and Daniel M German. 2014. On the evolution of Lehman’s
Laws. Journal of Software: Evolution and Process 26, 7 (2014), 613–619. https:
//doi.org/10.1002/smr.1636

[13] Jesus M Gonzalez-Barahona, Gregorio Robles, Israel Herraiz, and Felipe Ortega.
2014. Studying the laws of software evolution in a long-lived FLOSS project.
Journal of Software: Evolution and Process 26, 7 (2014), 589–612. https://doi.org/0.
1002/smr.1615

[14] Menelaos Konstantinidis, LisaWLe, and Xin Gao. 2022. An empirical comparative
assessment of inter-rater agreement of binary outcomes and multiple raters.
Symmetry 14, 2 (2022), 262. https://doi.org/10.3390/sym14020262

[15] Gurpreet Kour and Paramvir Singh. 2016. Using Lehman’s laws to validate the
software evolution of agile projects. In 2016 International Conference on Compu-
tational Techniques in Information and Communication Technologies (ICCTICT).
IEEE, 90–96. https://doi.org/10.1109/ICCTICT.2016.7514558

[16] Karim R Lakhani and Eric Von Hippel. 2004. How open source software
works:“free” user-to-user assistance. Produktentwicklung mit virtuellen Com-
munities: Kundenwünsche erfahren und Innovationen realisieren (2004), 303–339.

https://doi.org/10.1007/978-3-322-84540-5_13
[17] Courtney Miller, Christian Kästner, and Bogdan Vasilescu. 2023. "We Feel Like

We’re Winging It:" A Study on Navigating Open-Source Dependency Abandon-
ment. In Proceedings of the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE) (San
Francisco, CA). ACM Press, New York, NY.

[18] Courtney Miller, Paige Rodeghero, Margaret-Anne Storey, Denae Ford, and
Thomas Zimmermann. 2021. " how was your weekend?" software develop-
ment teams working from home during covid-19. In 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering (ICSE). IEEE, 624–636. https:
//doi.org/10.1109/ICSE43902.2021.00064

[19] Ramin Moazeni, Daniel Link, and Barry Boehm. 2013. Lehman’s laws and the
productivity of increments: Implications for productivity. In 2013 20th Asia-
Paci!c Software Engineering Conference (APSEC), Vol. 1. IEEE, 577–582. https:
//doi.org/10.1109/APSEC.2013.84

[20] Audris Mockus, David M Weiss, and Ping Zhang. 2003. Understanding and
predicting e!ort in software projects. In 25th International Conference on Software
Engineering, 2003. Proceedings. IEEE, 274–284. https://doi.org/10.1109/ICSE.2003.
1201207

[21] Jason T Rich, J Gail Neely, Randal C Paniello, Courtney CJ Voelker, Brian Nussen-
baum, and Eric W Wang. 2010. A practical guide to understanding Kaplan-
Meier curves. Otolaryngology—Head and Neck Surgery 143, 3 (2010), 331–336.
https://doi.org/10.1016/j.otohns.2010.05.007

[22] Michael Schemper, Samo Wakounig, and Georg Heinze. 2009. The estimation of
average hazard ratios by weighted Cox regression. Statistics in medicine 28, 19
(2009), 2473–2489. https://doi.org/10.1002/sim.3623

[23] Patrick Schober and Thomas R Vetter. 2021. Kaplan-meier curves, log-rank tests,
and cox regression for time-to-event data. Anesthesia & Analgesia 132, 4 (2021),
969–970. https://doi.org/10.1213/ANE.0000000000005358

[24] Kimberly Truong, CourtneyMiller, Bogdan Vasilescu, and Christian Kästner. 2022.
The unsolvable problem or the unheard answer? a dataset of 24,669 open-source
software conference talks. In Proceedings of the 19th International Conference on
Mining Software Repositories. 348–352. https://doi.org/10.1145/3524842.3528488

[25] Qiang Tu et al. 2000. Evolution in open source software: A case study. In Pro-
ceedings 2000 International Conference on Software Maintenance. IEEE, 131–142.
https://doi.org/10.1109/ICSM.2000.883030

[26] Jilles van Gurp, Christian Prehofer, and Jan Bosch. 2010. Comparing practices
for reuse in integration-oriented software product lines and large open source
software projects. Software: Practice and Experience 40, 4 (2010), 285–312. https:
//doi.org/10.1002/spe.955

[27] Liguo Yu and Alok Mishra. 2013. An empirical study of Lehman’s law on software
quality evolution. (2013).

[28] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small World with High Risks: A Study of Security Threats in the npm
Ecosystem. In USENIX security symposium, Vol. 17.

Received 2023-06-05; accepted 2023-08-11

2197

https://doi.org/10.14257/ijhit.2015.8.2.24
https://doi.org/10.14257/ijhit.2015.8.2.24
https://doi.org/10.1145/336512.336534
https://doi.org/10.1136/bmj.328.7447.1073
https://doi.org/10.17705/1jais.00244
https://doi.org/10.17705/1jais.00244
https://doi.org/10.1007/978-3-642-31164-2_2
https://doi.org/10.1145/3106237.3106246
https://doi.org/10.1108/14684521211240207
https://doi.org/10.1108/14684521211240207
https://doi.org/10.48558/9qrg-bh51
https://doi.org/10.1007/s12350-014-9908-2
https://doi.org/10.1007/s12350-014-9908-2
https://doi.org/10.1002/smr.1636
https://doi.org/10.1002/smr.1636
https://doi.org/0.1002/smr.1615
https://doi.org/0.1002/smr.1615
https://doi.org/10.3390/sym14020262
https://doi.org/10.1109/ICCTICT.2016.7514558
https://doi.org/10.1007/978-3-322-84540-5_13
https://doi.org/10.1109/ICSE43902.2021.00064
https://doi.org/10.1109/ICSE43902.2021.00064
https://doi.org/10.1109/APSEC.2013.84
https://doi.org/10.1109/APSEC.2013.84
https://doi.org/10.1109/ICSE.2003.1201207
https://doi.org/10.1109/ICSE.2003.1201207
https://doi.org/10.1016/j.otohns.2010.05.007
https://doi.org/10.1002/sim.3623
https://doi.org/10.1213/ANE.0000000000005358
https://doi.org/10.1145/3524842.3528488
https://doi.org/10.1109/ICSM.2000.883030
https://doi.org/10.1002/spe.955
https://doi.org/10.1002/spe.955

